Update app.py
Browse files
app.py
CHANGED
|
@@ -19,7 +19,7 @@ from transformers import AutoProcessor, LlavaForConditionalGeneration
|
|
| 19 |
from transformers import BitsAndBytesConfig
|
| 20 |
import torch
|
| 21 |
from huggingface_hub import InferenceClient
|
| 22 |
-
|
| 23 |
IS_SPACES_ZERO = os.environ.get("SPACES_ZERO_GPU", "0") == "1"
|
| 24 |
IS_SPACE = os.environ.get("SPACE_ID", None) is not None
|
| 25 |
|
|
@@ -119,7 +119,6 @@ def find_nearby(place=None):
|
|
| 119 |
print("The 5 closest locations are:\n")
|
| 120 |
print(closest_hotels)
|
| 121 |
return closest_hotels
|
| 122 |
-
|
| 123 |
@spaces.GPU
|
| 124 |
# Define the respond function
|
| 125 |
def search_hotel(place=None):
|
|
@@ -142,11 +141,9 @@ def search_hotel(place=None):
|
|
| 142 |
response = requests.get(image_url, verify=False)
|
| 143 |
response.raise_for_status()
|
| 144 |
img = Image.open(BytesIO(response.content))
|
| 145 |
-
|
| 146 |
prompt = "USER: <image>\nAnalyze this image. Give me feedback on whether this hotel is worth visiting based on the picture. Provide a summary review.\nASSISTANT:"
|
| 147 |
outputs = pipe_image_to_text(img, prompt=prompt, generate_kwargs={"max_new_tokens": 200})
|
| 148 |
description = outputs[0]["generated_text"].split("\nASSISTANT:")[-1].strip()
|
| 149 |
-
|
| 150 |
description_data.append({'hotel_name': hotel_name, 'hotel_id': hotel_id, 'image': img, 'description': description})
|
| 151 |
except (requests.RequestException, UnidentifiedImageError):
|
| 152 |
print(f"Skipping image at URL: {image_url}")
|
|
@@ -253,7 +250,6 @@ def llm_results(description_df):
|
|
| 253 |
conversation = [[{"text": "Based on your search...", "files": []}, {"text": f"**My recommendation:** {result}", "files": []}]]
|
| 254 |
return conversation
|
| 255 |
|
| 256 |
-
@spaces.GPU
|
| 257 |
def chatbot_response(user_input, conversation):
|
| 258 |
bot_initial_message = {
|
| 259 |
"text": f"Looking for hotels in {user_input}...",
|
|
|
|
| 19 |
from transformers import BitsAndBytesConfig
|
| 20 |
import torch
|
| 21 |
from huggingface_hub import InferenceClient
|
| 22 |
+
import spaces
|
| 23 |
IS_SPACES_ZERO = os.environ.get("SPACES_ZERO_GPU", "0") == "1"
|
| 24 |
IS_SPACE = os.environ.get("SPACE_ID", None) is not None
|
| 25 |
|
|
|
|
| 119 |
print("The 5 closest locations are:\n")
|
| 120 |
print(closest_hotels)
|
| 121 |
return closest_hotels
|
|
|
|
| 122 |
@spaces.GPU
|
| 123 |
# Define the respond function
|
| 124 |
def search_hotel(place=None):
|
|
|
|
| 141 |
response = requests.get(image_url, verify=False)
|
| 142 |
response.raise_for_status()
|
| 143 |
img = Image.open(BytesIO(response.content))
|
|
|
|
| 144 |
prompt = "USER: <image>\nAnalyze this image. Give me feedback on whether this hotel is worth visiting based on the picture. Provide a summary review.\nASSISTANT:"
|
| 145 |
outputs = pipe_image_to_text(img, prompt=prompt, generate_kwargs={"max_new_tokens": 200})
|
| 146 |
description = outputs[0]["generated_text"].split("\nASSISTANT:")[-1].strip()
|
|
|
|
| 147 |
description_data.append({'hotel_name': hotel_name, 'hotel_id': hotel_id, 'image': img, 'description': description})
|
| 148 |
except (requests.RequestException, UnidentifiedImageError):
|
| 149 |
print(f"Skipping image at URL: {image_url}")
|
|
|
|
| 250 |
conversation = [[{"text": "Based on your search...", "files": []}, {"text": f"**My recommendation:** {result}", "files": []}]]
|
| 251 |
return conversation
|
| 252 |
|
|
|
|
| 253 |
def chatbot_response(user_input, conversation):
|
| 254 |
bot_initial_message = {
|
| 255 |
"text": f"Looking for hotels in {user_input}...",
|