Update app.py
Browse files
app.py
CHANGED
@@ -19,7 +19,7 @@ from transformers import AutoProcessor, LlavaForConditionalGeneration
|
|
19 |
from transformers import BitsAndBytesConfig
|
20 |
import torch
|
21 |
from huggingface_hub import InferenceClient
|
22 |
-
|
23 |
IS_SPACES_ZERO = os.environ.get("SPACES_ZERO_GPU", "0") == "1"
|
24 |
IS_SPACE = os.environ.get("SPACE_ID", None) is not None
|
25 |
|
@@ -119,7 +119,6 @@ def find_nearby(place=None):
|
|
119 |
print("The 5 closest locations are:\n")
|
120 |
print(closest_hotels)
|
121 |
return closest_hotels
|
122 |
-
|
123 |
@spaces.GPU
|
124 |
# Define the respond function
|
125 |
def search_hotel(place=None):
|
@@ -142,11 +141,9 @@ def search_hotel(place=None):
|
|
142 |
response = requests.get(image_url, verify=False)
|
143 |
response.raise_for_status()
|
144 |
img = Image.open(BytesIO(response.content))
|
145 |
-
|
146 |
prompt = "USER: <image>\nAnalyze this image. Give me feedback on whether this hotel is worth visiting based on the picture. Provide a summary review.\nASSISTANT:"
|
147 |
outputs = pipe_image_to_text(img, prompt=prompt, generate_kwargs={"max_new_tokens": 200})
|
148 |
description = outputs[0]["generated_text"].split("\nASSISTANT:")[-1].strip()
|
149 |
-
|
150 |
description_data.append({'hotel_name': hotel_name, 'hotel_id': hotel_id, 'image': img, 'description': description})
|
151 |
except (requests.RequestException, UnidentifiedImageError):
|
152 |
print(f"Skipping image at URL: {image_url}")
|
@@ -253,7 +250,6 @@ def llm_results(description_df):
|
|
253 |
conversation = [[{"text": "Based on your search...", "files": []}, {"text": f"**My recommendation:** {result}", "files": []}]]
|
254 |
return conversation
|
255 |
|
256 |
-
@spaces.GPU
|
257 |
def chatbot_response(user_input, conversation):
|
258 |
bot_initial_message = {
|
259 |
"text": f"Looking for hotels in {user_input}...",
|
|
|
19 |
from transformers import BitsAndBytesConfig
|
20 |
import torch
|
21 |
from huggingface_hub import InferenceClient
|
22 |
+
import spaces
|
23 |
IS_SPACES_ZERO = os.environ.get("SPACES_ZERO_GPU", "0") == "1"
|
24 |
IS_SPACE = os.environ.get("SPACE_ID", None) is not None
|
25 |
|
|
|
119 |
print("The 5 closest locations are:\n")
|
120 |
print(closest_hotels)
|
121 |
return closest_hotels
|
|
|
122 |
@spaces.GPU
|
123 |
# Define the respond function
|
124 |
def search_hotel(place=None):
|
|
|
141 |
response = requests.get(image_url, verify=False)
|
142 |
response.raise_for_status()
|
143 |
img = Image.open(BytesIO(response.content))
|
|
|
144 |
prompt = "USER: <image>\nAnalyze this image. Give me feedback on whether this hotel is worth visiting based on the picture. Provide a summary review.\nASSISTANT:"
|
145 |
outputs = pipe_image_to_text(img, prompt=prompt, generate_kwargs={"max_new_tokens": 200})
|
146 |
description = outputs[0]["generated_text"].split("\nASSISTANT:")[-1].strip()
|
|
|
147 |
description_data.append({'hotel_name': hotel_name, 'hotel_id': hotel_id, 'image': img, 'description': description})
|
148 |
except (requests.RequestException, UnidentifiedImageError):
|
149 |
print(f"Skipping image at URL: {image_url}")
|
|
|
250 |
conversation = [[{"text": "Based on your search...", "files": []}, {"text": f"**My recommendation:** {result}", "files": []}]]
|
251 |
return conversation
|
252 |
|
|
|
253 |
def chatbot_response(user_input, conversation):
|
254 |
bot_initial_message = {
|
255 |
"text": f"Looking for hotels in {user_input}...",
|