updates
Browse files- app.py +82 -62
- backend.py +385 -0
app.py
CHANGED
|
@@ -1,63 +1,83 @@
|
|
| 1 |
import gradio as gr
|
| 2 |
-
from
|
| 3 |
-
|
| 4 |
-
|
| 5 |
-
|
| 6 |
-
|
| 7 |
-
|
| 8 |
-
|
| 9 |
-
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
+
from gradio_multimodalchatbot import MultimodalChatbot
|
| 3 |
+
from gradio.data_classes import FileData
|
| 4 |
+
from backend import *
|
| 5 |
+
|
| 6 |
+
|
| 7 |
+
def multimodal_results(description_df):
|
| 8 |
+
conversation = []
|
| 9 |
+
for _, row in description_df.iterrows():
|
| 10 |
+
hotel_name = row['hotel_name']
|
| 11 |
+
description = row['description']
|
| 12 |
+
img = row['image']
|
| 13 |
+
|
| 14 |
+
img_path = f"{hotel_name}.png"
|
| 15 |
+
img.save(img_path)
|
| 16 |
+
|
| 17 |
+
bot_msg = {
|
| 18 |
+
"text": f"Here is {hotel_name}. {description}",
|
| 19 |
+
"files": [{"file": FileData(path=img_path)}]
|
| 20 |
+
}
|
| 21 |
+
|
| 22 |
+
conversation.append([{"text": "", "files": []}, bot_msg])
|
| 23 |
+
|
| 24 |
+
return conversation
|
| 25 |
+
|
| 26 |
+
def llm_results(description_df):
|
| 27 |
+
result_df = grouped_description(description_df)
|
| 28 |
+
context_result = create_prompt_result(result_df)
|
| 29 |
+
recommendation_prompt = build_prompt(context_result)
|
| 30 |
+
result = generate_text_response(recommendation_prompt)
|
| 31 |
+
conversation = [[{"text": "Based on your search...", "files": []}, {"text": f"**My recommendation:** {result}", "files": []}]]
|
| 32 |
+
return conversation
|
| 33 |
+
|
| 34 |
+
|
| 35 |
+
def chatbot_response(user_input, conversation):
|
| 36 |
+
bot_initial_message = {
|
| 37 |
+
"text": f"Looking for hotels in {user_input}...",
|
| 38 |
+
"files": []
|
| 39 |
+
}
|
| 40 |
+
conversation.append([{"text": user_input, "files": []}, bot_initial_message])
|
| 41 |
+
|
| 42 |
+
yield conversation
|
| 43 |
+
|
| 44 |
+
description_df = search_hotel(user_input)
|
| 45 |
+
|
| 46 |
+
if description_df is None or description_df.empty:
|
| 47 |
+
error_message = {"text": f"Sorry, I couldn't find any hotels for {user_input}. Please try another location.", "files": []}
|
| 48 |
+
conversation.append([{"text": user_input, "files": []}, error_message])
|
| 49 |
+
yield conversation
|
| 50 |
+
return # Exit the function early
|
| 51 |
+
|
| 52 |
+
hotel_conversation = multimodal_results(description_df)
|
| 53 |
+
|
| 54 |
+
for message_pair in hotel_conversation:
|
| 55 |
+
conversation.append(message_pair)
|
| 56 |
+
yield conversation
|
| 57 |
+
|
| 58 |
+
final_recommendation = llm_results(description_df)
|
| 59 |
+
for message_pair in final_recommendation:
|
| 60 |
+
conversation.append(message_pair)
|
| 61 |
+
yield conversation
|
| 62 |
+
|
| 63 |
+
|
| 64 |
+
def initial_conversation():
|
| 65 |
+
return [[
|
| 66 |
+
{"text": "**Welcome to Hotel Recommendation!**", "files": []},
|
| 67 |
+
{"text": "Please enter the place you're interested in visiting.", "files": []}
|
| 68 |
+
]]
|
| 69 |
+
|
| 70 |
+
with gr.Blocks() as demo:
|
| 71 |
+
gr.Markdown("# 🏨 Hotel Recommendation Chatbot")
|
| 72 |
+
gr.Markdown("**Provide the location to discover hotels and receive personalized recommendations!**")
|
| 73 |
+
|
| 74 |
+
initial_conv = initial_conversation()
|
| 75 |
+
chatbot = MultimodalChatbot(value=initial_conv, height=800)
|
| 76 |
+
|
| 77 |
+
with gr.Row():
|
| 78 |
+
place_input = gr.Textbox(label="Enter a place", placeholder="E.g., Paris, Tokyo, New York")
|
| 79 |
+
send_btn = gr.Button("Search Hotels")
|
| 80 |
+
|
| 81 |
+
send_btn.click(chatbot_response, inputs=[place_input, chatbot], outputs=chatbot)
|
| 82 |
+
|
| 83 |
+
demo.launch(debug=True)
|
backend.py
ADDED
|
@@ -0,0 +1,385 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import pandas as pd
|
| 3 |
+
import requests
|
| 4 |
+
from PIL import Image, UnidentifiedImageError
|
| 5 |
+
from io import BytesIO
|
| 6 |
+
import matplotlib.pyplot as plt
|
| 7 |
+
import urllib3
|
| 8 |
+
from transformers import pipeline
|
| 9 |
+
from transformers import BitsAndBytesConfig
|
| 10 |
+
import torch
|
| 11 |
+
import textwrap
|
| 12 |
+
import pandas as pd
|
| 13 |
+
import numpy as np
|
| 14 |
+
from haversine import haversine # Install haversine library: pip install haversine
|
| 15 |
+
from transformers import AutoProcessor, LlavaForConditionalGeneration
|
| 16 |
+
from transformers import BitsAndBytesConfig
|
| 17 |
+
import torch
|
| 18 |
+
|
| 19 |
+
from huggingface_hub import InferenceClient
|
| 20 |
+
IS_SPACES_ZERO = os.environ.get("SPACES_ZERO_GPU", "0") == "1"
|
| 21 |
+
IS_SPACE = os.environ.get("SPACE_ID", None) is not None
|
| 22 |
+
|
| 23 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 24 |
+
LOW_MEMORY = os.getenv("LOW_MEMORY", "0") == "1"
|
| 25 |
+
print(f"Using device: {device}")
|
| 26 |
+
print(f"low memory: {LOW_MEMORY}")
|
| 27 |
+
# Define BitsAndBytesConfig
|
| 28 |
+
|
| 29 |
+
# Ensure model is on the correct device
|
| 30 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 31 |
+
|
| 32 |
+
quantization_config = BitsAndBytesConfig(
|
| 33 |
+
load_in_4bit=True,
|
| 34 |
+
bnb_4bit_compute_dtype=torch.float16
|
| 35 |
+
)
|
| 36 |
+
|
| 37 |
+
|
| 38 |
+
model_id = "llava-hf/llava-1.5-7b-hf"
|
| 39 |
+
|
| 40 |
+
processor = AutoProcessor.from_pretrained(model_id)
|
| 41 |
+
|
| 42 |
+
|
| 43 |
+
model = LlavaForConditionalGeneration.from_pretrained(model_id, quantization_config=quantization_config, device_map="auto")
|
| 44 |
+
model.to(device)
|
| 45 |
+
|
| 46 |
+
|
| 47 |
+
import os
|
| 48 |
+
import requests
|
| 49 |
+
|
| 50 |
+
url = 'https://github.com/ruslanmv/watsonx-with-multimodal-llava/raw/master/geocoded_hotels.csv'
|
| 51 |
+
filename = 'geocoded_hotels.csv'
|
| 52 |
+
|
| 53 |
+
# Check if the file already exists
|
| 54 |
+
if not os.path.isfile(filename):
|
| 55 |
+
response = requests.get(url)
|
| 56 |
+
|
| 57 |
+
if response.status_code == 200:
|
| 58 |
+
with open(filename, 'wb') as f:
|
| 59 |
+
f.write(response.content)
|
| 60 |
+
print(f"File {filename} downloaded successfully!")
|
| 61 |
+
else:
|
| 62 |
+
print(f"Error downloading file. Status code: {response.status_code}")
|
| 63 |
+
else:
|
| 64 |
+
print(f"File {filename} already exists.")
|
| 65 |
+
|
| 66 |
+
import os
|
| 67 |
+
import pandas as pd
|
| 68 |
+
from datasets import load_dataset
|
| 69 |
+
import pyarrow
|
| 70 |
+
|
| 71 |
+
# 1. Get the Current Directory
|
| 72 |
+
current_directory = os.getcwd()
|
| 73 |
+
|
| 74 |
+
# 2. Construct the Full Path to the CSV File
|
| 75 |
+
csv_file_path = os.path.join(current_directory, 'hotel_multimodal.csv')
|
| 76 |
+
|
| 77 |
+
# 3. Check if the file exists
|
| 78 |
+
if not os.path.exists(csv_file_path):
|
| 79 |
+
# If not, download the dataset
|
| 80 |
+
print("File not found, downloading from Hugging Face...")
|
| 81 |
+
|
| 82 |
+
dataset = load_dataset("ruslanmv/hotel-multimodal")
|
| 83 |
+
|
| 84 |
+
# Convert the 'train' dataset to a DataFrame using .to_pandas()
|
| 85 |
+
df_hotels = dataset['train'].to_pandas()
|
| 86 |
+
|
| 87 |
+
# 4.Save to CSV
|
| 88 |
+
df_hotels.to_csv(csv_file_path, index=False)
|
| 89 |
+
print("Dataset downloaded and saved as CSV.")
|
| 90 |
+
|
| 91 |
+
|
| 92 |
+
# 5. Read the CSV file
|
| 93 |
+
df_hotels = pd.read_csv(csv_file_path)
|
| 94 |
+
|
| 95 |
+
print("DataFrame loaded:")
|
| 96 |
+
geocoded_hotels_path = os.path.join(current_directory, 'geocoded_hotels.csv')
|
| 97 |
+
# Read the CSV file
|
| 98 |
+
geocoded_hotels = pd.read_csv(geocoded_hotels_path)
|
| 99 |
+
|
| 100 |
+
import requests
|
| 101 |
+
|
| 102 |
+
def get_current_location():
|
| 103 |
+
try:
|
| 104 |
+
response = requests.get('https://ipinfo.io/json')
|
| 105 |
+
data = response.json()
|
| 106 |
+
|
| 107 |
+
location = data.get('loc', '')
|
| 108 |
+
if location:
|
| 109 |
+
latitude, longitude = map(float, location.split(','))
|
| 110 |
+
return latitude, longitude
|
| 111 |
+
else:
|
| 112 |
+
return None, None
|
| 113 |
+
except Exception as e:
|
| 114 |
+
print(f"An error occurred: {e}")
|
| 115 |
+
return None, None
|
| 116 |
+
|
| 117 |
+
latitude, longitude = get_current_location()
|
| 118 |
+
if latitude and longitude:
|
| 119 |
+
print(f"Current location: Latitude = {latitude}, Longitude = {longitude}")
|
| 120 |
+
else:
|
| 121 |
+
print("Could not retrieve the current location.")
|
| 122 |
+
|
| 123 |
+
|
| 124 |
+
from geopy.geocoders import Nominatim
|
| 125 |
+
|
| 126 |
+
def get_coordinates(location_name):
|
| 127 |
+
"""Fetches latitude and longitude coordinates for a given location name.
|
| 128 |
+
|
| 129 |
+
Args:
|
| 130 |
+
location_name (str): The name of the location (e.g., "Rome, Italy").
|
| 131 |
+
|
| 132 |
+
Returns:
|
| 133 |
+
tuple: A tuple containing the latitude and longitude (float values),
|
| 134 |
+
or None if the location is not found.
|
| 135 |
+
"""
|
| 136 |
+
|
| 137 |
+
geolocator = Nominatim(user_agent="coordinate_finder")
|
| 138 |
+
location = geolocator.geocode(location_name)
|
| 139 |
+
|
| 140 |
+
if location:
|
| 141 |
+
return location.latitude, location.longitude
|
| 142 |
+
else:
|
| 143 |
+
return None # Location not found
|
| 144 |
+
|
| 145 |
+
|
| 146 |
+
|
| 147 |
+
def find_nearby(place=None):
|
| 148 |
+
if place!=None:
|
| 149 |
+
coordinates = get_coordinates(place)
|
| 150 |
+
if coordinates:
|
| 151 |
+
latitude, longitude = coordinates
|
| 152 |
+
print(f"The coordinates of {place} are: Latitude: {latitude}, Longitude: {longitude}")
|
| 153 |
+
else:
|
| 154 |
+
print(f"Location not found: {place}")
|
| 155 |
+
else:
|
| 156 |
+
latitude, longitude = get_current_location()
|
| 157 |
+
if latitude and longitude:
|
| 158 |
+
print(f"Current location: Latitude = {latitude}, Longitude = {longitude}")
|
| 159 |
+
# Load the geocoded_hotels DataFrame
|
| 160 |
+
current_directory = os.getcwd()
|
| 161 |
+
geocoded_hotels_path = os.path.join(current_directory, 'geocoded_hotels.csv')
|
| 162 |
+
geocoded_hotels = pd.read_csv(geocoded_hotels_path)
|
| 163 |
+
|
| 164 |
+
# Define input coordinates for the reference location
|
| 165 |
+
reference_latitude = latitude
|
| 166 |
+
reference_longitude = longitude
|
| 167 |
+
|
| 168 |
+
# Haversine Distance Function
|
| 169 |
+
def calculate_haversine_distance(lat1, lon1, lat2, lon2):
|
| 170 |
+
"""Calculates the Haversine distance between two points on the Earth's surface."""
|
| 171 |
+
return haversine((lat1, lon1), (lat2, lon2))
|
| 172 |
+
|
| 173 |
+
# Calculate distances to all other points in the DataFrame
|
| 174 |
+
geocoded_hotels['distance_km'] = geocoded_hotels.apply(
|
| 175 |
+
lambda row: calculate_haversine_distance(
|
| 176 |
+
reference_latitude, reference_longitude, row['latitude'], row['longitude']
|
| 177 |
+
),
|
| 178 |
+
axis=1
|
| 179 |
+
)
|
| 180 |
+
|
| 181 |
+
# Sort by distance and get the top 5 closest points
|
| 182 |
+
closest_hotels = geocoded_hotels.sort_values(by='distance_km').head(5)
|
| 183 |
+
|
| 184 |
+
# Display the results
|
| 185 |
+
print("The 5 closest locations are:\n")
|
| 186 |
+
print(closest_hotels)
|
| 187 |
+
return closest_hotels
|
| 188 |
+
|
| 189 |
+
@spaces.GPU
|
| 190 |
+
# Define the respond function
|
| 191 |
+
def search_hotel(place=None):
|
| 192 |
+
import os
|
| 193 |
+
import pandas as pd
|
| 194 |
+
import requests
|
| 195 |
+
from PIL import Image, UnidentifiedImageError
|
| 196 |
+
from io import BytesIO
|
| 197 |
+
import urllib3
|
| 198 |
+
from transformers import pipeline
|
| 199 |
+
from transformers import BitsAndBytesConfig
|
| 200 |
+
import torch
|
| 201 |
+
|
| 202 |
+
# Suppress the InsecureRequestWarning
|
| 203 |
+
urllib3.disable_warnings(urllib3.exceptions.InsecureRequestWarning)
|
| 204 |
+
|
| 205 |
+
# 1. Get the Current Directory
|
| 206 |
+
current_directory = os.getcwd()
|
| 207 |
+
# 2. Construct the Full Path to the CSV File
|
| 208 |
+
csv_file_path = os.path.join(current_directory, 'hotel_multimodal.csv')
|
| 209 |
+
# Read the CSV file
|
| 210 |
+
df_hotels = pd.read_csv(csv_file_path)
|
| 211 |
+
geocoded_hotels_path = os.path.join(current_directory, 'geocoded_hotels.csv')
|
| 212 |
+
# Read the CSV file
|
| 213 |
+
geocoded_hotels = pd.read_csv(geocoded_hotels_path)
|
| 214 |
+
|
| 215 |
+
# Assuming find_nearby function is defined elsewhere
|
| 216 |
+
df_found = find_nearby(place)
|
| 217 |
+
|
| 218 |
+
# Converting df_found[["hotel_id"]].values to a list
|
| 219 |
+
hotel_ids = df_found["hotel_id"].values.tolist()
|
| 220 |
+
|
| 221 |
+
# Extracting rows from df_hotels where hotel_id is in the list hotel_ids
|
| 222 |
+
filtered_df = df_hotels[df_hotels['hotel_id'].isin(hotel_ids)]
|
| 223 |
+
|
| 224 |
+
# Ordering filtered_df by the order of hotel_ids
|
| 225 |
+
filtered_df['hotel_id'] = pd.Categorical(filtered_df['hotel_id'], categories=hotel_ids, ordered=True)
|
| 226 |
+
filtered_df = filtered_df.sort_values('hotel_id').reset_index(drop=True)
|
| 227 |
+
|
| 228 |
+
# Define the quantization config and model ID
|
| 229 |
+
quantization_config = BitsAndBytesConfig(
|
| 230 |
+
load_in_4bit=True,
|
| 231 |
+
bnb_4bit_compute_dtype=torch.float16
|
| 232 |
+
)
|
| 233 |
+
|
| 234 |
+
model_id = "llava-hf/llava-1.5-7b-hf"
|
| 235 |
+
|
| 236 |
+
# Initialize the pipeline
|
| 237 |
+
pipe = pipeline("image-to-text", model=model_id, model_kwargs={"quantization_config": quantization_config})
|
| 238 |
+
|
| 239 |
+
# Group by hotel_id and take the first 2 image URLs for each hotel
|
| 240 |
+
grouped_df = filtered_df.groupby('hotel_id', observed=True).head(2)
|
| 241 |
+
|
| 242 |
+
# Create a new DataFrame for storing image descriptions
|
| 243 |
+
description_data = []
|
| 244 |
+
|
| 245 |
+
# Download and generate descriptions for the images
|
| 246 |
+
for index, row in grouped_df.iterrows():
|
| 247 |
+
hotel_id = row['hotel_id']
|
| 248 |
+
hotel_name = row['hotel_name']
|
| 249 |
+
image_url = row['image_url']
|
| 250 |
+
|
| 251 |
+
try:
|
| 252 |
+
response = requests.get(image_url, verify=False)
|
| 253 |
+
response.raise_for_status() # Check for request errors
|
| 254 |
+
img = Image.open(BytesIO(response.content))
|
| 255 |
+
|
| 256 |
+
# Generate description for the image
|
| 257 |
+
prompt = "USER: <image>\nAnalyze this image. Give me feedback on whether this hotel is worth visiting based on the picture. Provide a summary review.\nASSISTANT:"
|
| 258 |
+
outputs = pipe(img, prompt=prompt, generate_kwargs={"max_new_tokens": 200})
|
| 259 |
+
description = outputs[0]["generated_text"].split("\nASSISTANT:")[-1].strip()
|
| 260 |
+
|
| 261 |
+
# Append data to the list
|
| 262 |
+
description_data.append({
|
| 263 |
+
'hotel_name': hotel_name,
|
| 264 |
+
'hotel_id': hotel_id,
|
| 265 |
+
'image': img,
|
| 266 |
+
'description': description
|
| 267 |
+
})
|
| 268 |
+
except (requests.RequestException, UnidentifiedImageError):
|
| 269 |
+
print(f"Skipping image at URL: {image_url}")
|
| 270 |
+
|
| 271 |
+
# Create a DataFrame from the description data
|
| 272 |
+
description_df = pd.DataFrame(description_data)
|
| 273 |
+
return description_df
|
| 274 |
+
|
| 275 |
+
|
| 276 |
+
def show_hotels(place=None):
|
| 277 |
+
description_df = search_hotel(place)
|
| 278 |
+
|
| 279 |
+
# Calculate the number of rows needed
|
| 280 |
+
num_images = len(description_df)
|
| 281 |
+
num_rows = (num_images + 1) // 2 # Two images per row
|
| 282 |
+
|
| 283 |
+
fig, axs = plt.subplots(num_rows * 2, 2, figsize=(20, 10 * num_rows))
|
| 284 |
+
|
| 285 |
+
current_index = 0
|
| 286 |
+
|
| 287 |
+
for _, row in description_df.iterrows():
|
| 288 |
+
img = row['image']
|
| 289 |
+
description = row['description']
|
| 290 |
+
|
| 291 |
+
if img is None: # Skip if the image is missing
|
| 292 |
+
continue
|
| 293 |
+
|
| 294 |
+
row_idx = (current_index // 2) * 2
|
| 295 |
+
col_idx = current_index % 2
|
| 296 |
+
|
| 297 |
+
# Plot the image
|
| 298 |
+
axs[row_idx, col_idx].imshow(img)
|
| 299 |
+
axs[row_idx, col_idx].axis('off')
|
| 300 |
+
axs[row_idx, col_idx].set_title(f"{row['hotel_name']}\nHotel ID: {row['hotel_id']} Image {current_index + 1}", fontsize=16)
|
| 301 |
+
|
| 302 |
+
# Wrap the description text
|
| 303 |
+
wrapped_description = "\n".join(textwrap.wrap(description, width=50))
|
| 304 |
+
|
| 305 |
+
# Plot the description
|
| 306 |
+
axs[row_idx + 1, col_idx].text(0.5, 0.5, wrapped_description, ha='center', va='center', wrap=True, fontsize=14)
|
| 307 |
+
axs[row_idx + 1, col_idx].axis('off')
|
| 308 |
+
|
| 309 |
+
current_index += 1
|
| 310 |
+
|
| 311 |
+
# Hide any unused subplots
|
| 312 |
+
total_plots = (current_index + 1) // 2 * 2
|
| 313 |
+
for j in range(current_index, total_plots * 2):
|
| 314 |
+
row_idx = (j // 2) * 2
|
| 315 |
+
col_idx = j % 2
|
| 316 |
+
if row_idx < num_rows * 2:
|
| 317 |
+
axs[row_idx, col_idx].axis('off')
|
| 318 |
+
if row_idx + 1 < num_rows * 2:
|
| 319 |
+
axs[row_idx + 1, col_idx].axis('off')
|
| 320 |
+
|
| 321 |
+
plt.tight_layout()
|
| 322 |
+
plt.show()
|
| 323 |
+
|
| 324 |
+
def grouped_description(description_df):
|
| 325 |
+
|
| 326 |
+
# Group by 'hotel_id' and aggregate descriptions
|
| 327 |
+
grouped_descriptions = description_df.groupby('hotel_id')['description'].apply(lambda x: ' '.join(x.astype(str))).reset_index()
|
| 328 |
+
|
| 329 |
+
# Merge with original DataFrame to get hotel names
|
| 330 |
+
result_df = pd.merge(grouped_descriptions, description_df[['hotel_id', 'hotel_name']], on='hotel_id', how='left')
|
| 331 |
+
|
| 332 |
+
# Drop duplicates and keep only the first occurrence of each hotel_id
|
| 333 |
+
result_df = result_df.drop_duplicates(subset='hotel_id', keep='first')
|
| 334 |
+
|
| 335 |
+
# Reorder columns
|
| 336 |
+
result_df = result_df[['hotel_name', 'hotel_id', 'description']]
|
| 337 |
+
return result_df
|
| 338 |
+
|
| 339 |
+
# prompt: please create a new python function that given the result_df as an input create a single prompt where for given hotel_name you append the hotel_id and description , such we can use later this as context for a future llm query
|
| 340 |
+
|
| 341 |
+
def create_prompt_result(result_df):
|
| 342 |
+
prompt = ""
|
| 343 |
+
for _, row in result_df.iterrows():
|
| 344 |
+
hotel_name = row['hotel_name']
|
| 345 |
+
hotel_id = row['hotel_id']
|
| 346 |
+
description = row['description']
|
| 347 |
+
prompt += f"Hotel Name: {hotel_name}\nHotel ID: {hotel_id}\nDescription: {description}\n\n"
|
| 348 |
+
return prompt
|
| 349 |
+
from transformers import pipeline, BitsAndBytesConfig
|
| 350 |
+
import torch
|
| 351 |
+
from langchain import PromptTemplate
|
| 352 |
+
|
| 353 |
+
# Create a LangChain prompt template for the hotel recommendation
|
| 354 |
+
hotel_recommendation_template = """
|
| 355 |
+
<s>[INST] <<SYS>>
|
| 356 |
+
You are a helpful and informative chatbot assistant.
|
| 357 |
+
<</SYS>>
|
| 358 |
+
Based on the following hotel descriptions, recommend the best hotel:
|
| 359 |
+
{context_result}
|
| 360 |
+
[/INST]
|
| 361 |
+
"""
|
| 362 |
+
@spaces.GPU
|
| 363 |
+
# Define the respond function
|
| 364 |
+
# Use LangChain to create a prompt based on the template
|
| 365 |
+
def build_prompt(context_result):
|
| 366 |
+
prompt_template = PromptTemplate(template=hotel_recommendation_template)
|
| 367 |
+
return prompt_template.format(context_result=context_result)
|
| 368 |
+
|
| 369 |
+
# Quantization configuration for efficient model loading
|
| 370 |
+
quantization_config = BitsAndBytesConfig(
|
| 371 |
+
load_in_4bit=True,
|
| 372 |
+
bnb_4bit_compute_dtype=torch.float16
|
| 373 |
+
)
|
| 374 |
+
|
| 375 |
+
# Initialize the text generation pipeline
|
| 376 |
+
pipe_text = pipeline("text-generation", model="mistralai/Mistral-7B-Instruct-v0.2",
|
| 377 |
+
model_kwargs={"quantization_config": quantization_config})
|
| 378 |
+
|
| 379 |
+
def generate_text_response(prompt):
|
| 380 |
+
outputs = pipe_text(prompt, max_new_tokens=500)
|
| 381 |
+
# Extract only the response after the instruction token
|
| 382 |
+
response = outputs[0]['generated_text'].split("[/INST]")[-1].strip()
|
| 383 |
+
return response
|
| 384 |
+
#place='Genova Italia'
|
| 385 |
+
#show_hotels(place)
|