ruslanmv commited on
Commit
c28a65c
·
1 Parent(s): be5a54d

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +5 -1
app.py CHANGED
@@ -20,6 +20,7 @@ from transformers import BitsAndBytesConfig
20
  import torch
21
  from huggingface_hub import InferenceClient
22
  from transformers import AutoTokenizer
 
23
  import spaces
24
  IS_SPACES_ZERO = os.environ.get("SPACES_ZERO_GPU", "0") == "1"
25
  IS_SPACE = os.environ.get("SPACE_ID", None) is not None
@@ -43,11 +44,14 @@ quantization_config = BitsAndBytesConfig(
43
 
44
  # Load the tokenizer associated with your 'MODEL_ID'
45
  tokenizer_image_to_text = AutoTokenizer.from_pretrained(MODEL_ID)
 
 
46
  # Load models only once
47
  processor = AutoProcessor.from_pretrained(MODEL_ID)
48
  model = LlavaForConditionalGeneration.from_pretrained(MODEL_ID, quantization_config=quantization_config, device_map="auto")
49
  # Pass the tokenizer explicitly to the pipeline
50
- pipe_image_to_text = pipeline("image-to-text", model=model, tokenizer=tokenizer_image_to_text, model_kwargs={"quantization_config": quantization_config})
 
51
  # Initialize the text generation pipeline
52
  pipe_text = pipeline("text-generation", model=TEXT_MODEL_ID, model_kwargs={"quantization_config": quantization_config})
53
 
 
20
  import torch
21
  from huggingface_hub import InferenceClient
22
  from transformers import AutoTokenizer
23
+ from transformers import AutoImageProcessor
24
  import spaces
25
  IS_SPACES_ZERO = os.environ.get("SPACES_ZERO_GPU", "0") == "1"
26
  IS_SPACE = os.environ.get("SPACE_ID", None) is not None
 
44
 
45
  # Load the tokenizer associated with your 'MODEL_ID'
46
  tokenizer_image_to_text = AutoTokenizer.from_pretrained(MODEL_ID)
47
+ # Load the image processor associated with your 'MODEL_ID'
48
+ image_processor = AutoImageProcessor.from_pretrained(MODEL_ID)
49
  # Load models only once
50
  processor = AutoProcessor.from_pretrained(MODEL_ID)
51
  model = LlavaForConditionalGeneration.from_pretrained(MODEL_ID, quantization_config=quantization_config, device_map="auto")
52
  # Pass the tokenizer explicitly to the pipeline
53
+ # Pass the image processor explicitly to the pipeline
54
+ pipe_image_to_text = pipeline("image-to-text", model=model, tokenizer=tokenizer_image_to_text, image_processor=image_processor, model_kwargs={"quantization_config": quantization_config})
55
  # Initialize the text generation pipeline
56
  pipe_text = pipeline("text-generation", model=TEXT_MODEL_ID, model_kwargs={"quantization_config": quantization_config})
57