ruslanmv commited on
Commit
be5a54d
·
1 Parent(s): b6e8fb0

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +5 -2
app.py CHANGED
@@ -19,6 +19,7 @@ from transformers import AutoProcessor, LlavaForConditionalGeneration
19
  from transformers import BitsAndBytesConfig
20
  import torch
21
  from huggingface_hub import InferenceClient
 
22
  import spaces
23
  IS_SPACES_ZERO = os.environ.get("SPACES_ZERO_GPU", "0") == "1"
24
  IS_SPACE = os.environ.get("SPACE_ID", None) is not None
@@ -40,11 +41,13 @@ quantization_config = BitsAndBytesConfig(
40
  bnb_4bit_compute_dtype=torch.float16
41
  )
42
 
43
-
 
44
  # Load models only once
45
  processor = AutoProcessor.from_pretrained(MODEL_ID)
46
  model = LlavaForConditionalGeneration.from_pretrained(MODEL_ID, quantization_config=quantization_config, device_map="auto")
47
- pipe_image_to_text = pipeline("image-to-text", model=model, model_kwargs={"quantization_config": quantization_config})
 
48
  # Initialize the text generation pipeline
49
  pipe_text = pipeline("text-generation", model=TEXT_MODEL_ID, model_kwargs={"quantization_config": quantization_config})
50
 
 
19
  from transformers import BitsAndBytesConfig
20
  import torch
21
  from huggingface_hub import InferenceClient
22
+ from transformers import AutoTokenizer
23
  import spaces
24
  IS_SPACES_ZERO = os.environ.get("SPACES_ZERO_GPU", "0") == "1"
25
  IS_SPACE = os.environ.get("SPACE_ID", None) is not None
 
41
  bnb_4bit_compute_dtype=torch.float16
42
  )
43
 
44
+ # Load the tokenizer associated with your 'MODEL_ID'
45
+ tokenizer_image_to_text = AutoTokenizer.from_pretrained(MODEL_ID)
46
  # Load models only once
47
  processor = AutoProcessor.from_pretrained(MODEL_ID)
48
  model = LlavaForConditionalGeneration.from_pretrained(MODEL_ID, quantization_config=quantization_config, device_map="auto")
49
+ # Pass the tokenizer explicitly to the pipeline
50
+ pipe_image_to_text = pipeline("image-to-text", model=model, tokenizer=tokenizer_image_to_text, model_kwargs={"quantization_config": quantization_config})
51
  # Initialize the text generation pipeline
52
  pipe_text = pipeline("text-generation", model=TEXT_MODEL_ID, model_kwargs={"quantization_config": quantization_config})
53