File size: 6,379 Bytes
bafab47
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0377381
bafab47
 
 
 
 
 
 
 
d231748
bafab47
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
19ec9ba
 
bafab47
 
 
 
 
 
 
 
 
19ec9ba
bafab47
 
 
 
162ac6d
 
863699a
e48aa26
aeb4947
 
162ac6d
 
 
 
 
93212ca
 
162ac6d
 
 
 
 
 
 
8047571
 
 
 
 
 
 
162ac6d
8047571
 
 
 
 
162ac6d
8047571
 
 
 
aeb4947
8047571
 
19ec9ba
 
1a48270
162ac6d
 
 
aeb4947
162ac6d
 
 
 
aeb4947
19ec9ba
162ac6d
 
 
 
 
aeb4947
 
 
 
162ac6d
434b870
162ac6d
aeb4947
0377381
162ac6d
8047571
 
 
 
162ac6d
 
 
d231748
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
import gradio as gr
import time
from video_processing import process_video
from PIL import Image
import matplotlib

matplotlib.rcParams['figure.dpi'] = 300
matplotlib.rcParams['savefig.dpi'] = 300

def process_and_show_completion(video_input_path, anomaly_threshold_input, fps, progress=gr.Progress()):
    try:
        print("Starting video processing...")
        results = process_video(video_input_path, anomaly_threshold_input, fps, progress=progress)
        print("Video processing completed.")

        if isinstance(results[0], str) and results[0].startswith("Error"):
            print(f"Error occurred: {results[0]}")
            return [results[0]] + [None] * 25  

        exec_time, results_summary, df, mse_embeddings, mse_posture, mse_voice, \
            mse_plot_embeddings, mse_plot_posture, mse_plot_voice, \
            mse_histogram_embeddings, mse_histogram_posture, mse_histogram_voice, \
            mse_heatmap_embeddings, mse_heatmap_posture, mse_heatmap_voice, \
            face_samples_frequent, \
            anomaly_faces_embeddings, anomaly_frames_posture_images, \
            aligned_faces_folder, frames_folder, \
            heatmap_video_path, correlation_heatmap, scatter_plot_3d = results

        anomaly_faces_embeddings_pil = [Image.fromarray(face) for face in anomaly_faces_embeddings] if anomaly_faces_embeddings is not None else []
        anomaly_frames_posture_pil = [Image.fromarray(frame) for frame in anomaly_frames_posture_images] if anomaly_frames_posture_images is not None else []

        face_samples_frequent = [Image.open(path) for path in face_samples_frequent] if face_samples_frequent is not None else []

        output = [
            exec_time, results_summary,
            df, mse_embeddings, mse_posture, mse_voice,
            mse_plot_embeddings, mse_plot_posture, mse_plot_voice,
            mse_histogram_embeddings, mse_histogram_posture, mse_histogram_voice,
            mse_heatmap_embeddings, mse_heatmap_posture, mse_heatmap_voice,
            anomaly_faces_embeddings_pil, anomaly_frames_posture_pil,
            face_samples_frequent,
            aligned_faces_folder, frames_folder,
            mse_embeddings, mse_posture, mse_voice,
            heatmap_video_path,
            correlation_heatmap, scatter_plot_3d
        ]

        return output

    except Exception as e:
        error_message = f"An error occurred: {str(e)}"
        print(error_message)
        import traceback
        traceback.print_exc()
        return [error_message] + [None] * 25

def show_results(outputs):
    return gr.Group(visible=True)

with gr.Blocks() as iface:
    gr.Markdown("""
    # Multimodal Behavioral Anomalies Detection

    This tool detects anomalies in facial expressions, body language, and voice over the timeline of a video.
    It extracts faces, postures, and voice from video frames, and analyzes them to identify anomalies using time series analysis and a variational autoencoder (VAE) approach.
    """)

    with gr.Row():
        video_input = gr.Video()

    anomaly_threshold = gr.Slider(minimum=1, maximum=5, step=0.1, value=3, label="Anomaly Detection Threshold (Standard deviation)")
    fps_slider = gr.Slider(minimum=5, maximum=20, step=1, value=10, label="Frames Per Second (FPS)")
    process_btn = gr.Button("Detect Anomalies")
    progress_bar = gr.Progress()
    execution_time = gr.Number(label="Execution Time (seconds)")

    with gr.Group(visible=False) as results_group:
        results_text = gr.TextArea(label="Anomaly Detection Results", lines=4)

        with gr.Tabs():
            with gr.TabItem("Facial Features"):
                mse_features_plot = gr.Plot(label="MSE: Facial Features")
                mse_features_hist = gr.Plot(label="MSE Distribution: Facial Features")
                mse_features_heatmap = gr.Plot(label="MSE Heatmap: Facial Features")
                anomaly_frames_features = gr.Gallery(label="Anomaly Frames (Facial Features)", columns=6, rows=2, height="auto")
                face_samples_most_frequent = gr.Gallery(label="Most Frequent Person Samples", columns=10, rows=2, height="auto")

            with gr.TabItem("Body Posture"):
                mse_posture_plot = gr.Plot(label="MSE: Body Posture")
                mse_posture_hist = gr.Plot(label="MSE Distribution: Body Posture")
                mse_posture_heatmap = gr.Plot(label="MSE Heatmap: Body Posture")
                anomaly_frames_posture = gr.Gallery(label="Anomaly Frames (Body Posture)", columns=6, rows=2, height="auto")

            with gr.TabItem("Voice"):
                mse_voice_plot = gr.Plot(label="MSE: Voice")
                mse_voice_hist = gr.Plot(label="MSE Distribution: Voice")
                mse_voice_heatmap = gr.Plot(label="MSE Heatmap: Voice")

            with gr.TabItem("Video with Heatmap"):
                heatmap_video = gr.Video(label="Video with Anomaly Heatmap")
                correlation_heatmap_plot = gr.Plot(label="Correlation Heatmap")
                scatter_plot_3d_plot = gr.Plot(label="3D Scatter Plot of MSEs")
                
    df_store = gr.State()
    mse_features_store = gr.State()
    mse_posture_store = gr.State()
    mse_voice_store = gr.State()
    aligned_faces_folder_store = gr.State()
    frames_folder_store = gr.State()
    mse_heatmap_embeddings_store = gr.State()
    mse_heatmap_posture_store = gr.State()
    mse_heatmap_voice_store = gr.State()
    
    process_btn.click(
        process_and_show_completion,
        inputs=[video_input, anomaly_threshold, fps_slider],
        outputs=[
            execution_time, results_text, df_store,
            mse_features_store, mse_posture_store, mse_voice_store,
            mse_features_plot, mse_posture_plot, mse_voice_plot,
            mse_features_hist, mse_posture_hist, mse_voice_hist,
            mse_features_heatmap, mse_posture_heatmap, mse_voice_heatmap,
            anomaly_frames_features, anomaly_frames_posture,
            face_samples_most_frequent,
            aligned_faces_folder_store, frames_folder_store,
            mse_heatmap_embeddings_store, mse_heatmap_posture_store, mse_heatmap_voice_store,
            heatmap_video, correlation_heatmap_plot, scatter_plot_3d_plot
        ]
    ).then(
        show_results,
        inputs=None,
        outputs=results_group
    )

if __name__ == "__main__":
    iface.launch()