Update app.py
Browse files
app.py
CHANGED
@@ -1,58 +1,3 @@
|
|
1 |
-
import gradio as gr
|
2 |
-
import time
|
3 |
-
from video_processing import process_video
|
4 |
-
from PIL import Image
|
5 |
-
import matplotlib
|
6 |
-
|
7 |
-
matplotlib.rcParams['figure.dpi'] = 300
|
8 |
-
matplotlib.rcParams['savefig.dpi'] = 300
|
9 |
-
|
10 |
-
def process_and_show_completion(video_input_path, anomaly_threshold_input, fps, progress=gr.Progress()):
|
11 |
-
try:
|
12 |
-
print("Starting video processing...")
|
13 |
-
results = process_video(video_input_path, anomaly_threshold_input, fps, progress=progress)
|
14 |
-
print("Video processing completed.")
|
15 |
-
|
16 |
-
if isinstance(results[0], str) and results[0].startswith("Error"):
|
17 |
-
print(f"Error occurred: {results[0]}")
|
18 |
-
return [results[0]] + [None] * 23
|
19 |
-
|
20 |
-
exec_time, results_summary, df, mse_embeddings, mse_posture, mse_voice, \
|
21 |
-
mse_plot_embeddings, mse_plot_posture, mse_plot_voice, \
|
22 |
-
mse_histogram_embeddings, mse_histogram_posture, mse_histogram_voice, \
|
23 |
-
mse_heatmap_embeddings, mse_heatmap_posture, mse_heatmap_voice, \
|
24 |
-
face_samples_frequent, \
|
25 |
-
anomaly_faces_embeddings, anomaly_frames_posture_images, \
|
26 |
-
aligned_faces_folder, frames_folder, \
|
27 |
-
heatmap_video_path = results
|
28 |
-
|
29 |
-
anomaly_faces_embeddings_pil = [Image.fromarray(face) for face in anomaly_faces_embeddings] if anomaly_faces_embeddings is not None else []
|
30 |
-
anomaly_frames_posture_pil = [Image.fromarray(frame) for frame in anomaly_frames_posture_images] if anomaly_frames_posture_images is not None else []
|
31 |
-
|
32 |
-
face_samples_frequent = [Image.open(path) for path in face_samples_frequent] if face_samples_frequent is not None else []
|
33 |
-
|
34 |
-
output = [
|
35 |
-
exec_time, results_summary,
|
36 |
-
df, mse_embeddings, mse_posture, mse_voice,
|
37 |
-
mse_plot_embeddings, mse_plot_posture, mse_plot_voice,
|
38 |
-
mse_histogram_embeddings, mse_histogram_posture, mse_histogram_voice,
|
39 |
-
mse_heatmap_embeddings, mse_heatmap_posture, mse_heatmap_voice,
|
40 |
-
anomaly_faces_embeddings_pil, anomaly_frames_posture_pil,
|
41 |
-
face_samples_frequent,
|
42 |
-
aligned_faces_folder, frames_folder,
|
43 |
-
mse_embeddings, mse_posture, mse_voice,
|
44 |
-
heatmap_video_path
|
45 |
-
]
|
46 |
-
|
47 |
-
return output
|
48 |
-
|
49 |
-
except Exception as e:
|
50 |
-
error_message = f"An error occurred: {str(e)}"
|
51 |
-
print(error_message)
|
52 |
-
import traceback
|
53 |
-
traceback.print_exc()
|
54 |
-
return [error_message] + [None] * 23
|
55 |
-
|
56 |
with gr.Blocks() as iface:
|
57 |
gr.Markdown("""
|
58 |
# Multimodal Behavioral Anomalies Detection
|
@@ -73,26 +18,27 @@ with gr.Blocks() as iface:
|
|
73 |
with gr.Group(visible=False) as results_group:
|
74 |
results_text = gr.TextArea(label="Anomaly Detection Results", lines=4)
|
75 |
|
76 |
-
with gr.
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
|
|
82 |
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
|
94 |
-
|
95 |
-
|
96 |
|
97 |
df_store = gr.State()
|
98 |
mse_features_store = gr.State()
|
@@ -104,6 +50,9 @@ with gr.Blocks() as iface:
|
|
104 |
mse_heatmap_posture_store = gr.State()
|
105 |
mse_heatmap_voice_store = gr.State()
|
106 |
|
|
|
|
|
|
|
107 |
process_btn.click(
|
108 |
process_and_show_completion,
|
109 |
inputs=[video_input, anomaly_threshold, fps_slider],
|
@@ -119,6 +68,10 @@ with gr.Blocks() as iface:
|
|
119 |
mse_heatmap_embeddings_store, mse_heatmap_posture_store, mse_heatmap_voice_store,
|
120 |
heatmap_video
|
121 |
]
|
|
|
|
|
|
|
|
|
122 |
)
|
123 |
|
124 |
if __name__ == "__main__":
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
with gr.Blocks() as iface:
|
2 |
gr.Markdown("""
|
3 |
# Multimodal Behavioral Anomalies Detection
|
|
|
18 |
with gr.Group(visible=False) as results_group:
|
19 |
results_text = gr.TextArea(label="Anomaly Detection Results", lines=4)
|
20 |
|
21 |
+
with gr.Tabs():
|
22 |
+
with gr.TabItem("Facial Features"):
|
23 |
+
mse_features_plot = gr.Plot(label="MSE: Facial Features")
|
24 |
+
mse_features_hist = gr.Plot(label="MSE Distribution: Facial Features")
|
25 |
+
mse_features_heatmap = gr.Plot(label="MSE Heatmap: Facial Features")
|
26 |
+
anomaly_frames_features = gr.Gallery(label="Anomaly Frames (Facial Features)", columns=6, rows=2, height="auto")
|
27 |
+
face_samples_most_frequent = gr.Gallery(label="Most Frequent Person Samples", columns=10, rows=2, height="auto")
|
28 |
|
29 |
+
with gr.TabItem("Body Posture"):
|
30 |
+
mse_posture_plot = gr.Plot(label="MSE: Body Posture")
|
31 |
+
mse_posture_hist = gr.Plot(label="MSE Distribution: Body Posture")
|
32 |
+
mse_posture_heatmap = gr.Plot(label="MSE Heatmap: Body Posture")
|
33 |
+
anomaly_frames_posture = gr.Gallery(label="Anomaly Frames (Body Posture)", columns=6, rows=2, height="auto")
|
34 |
|
35 |
+
with gr.TabItem("Voice"):
|
36 |
+
mse_voice_plot = gr.Plot(label="MSE: Voice")
|
37 |
+
mse_voice_hist = gr.Plot(label="MSE Distribution: Voice")
|
38 |
+
mse_voice_heatmap = gr.Plot(label="MSE Heatmap: Voice")
|
39 |
|
40 |
+
with gr.TabItem("Video with Heatmap"):
|
41 |
+
heatmap_video = gr.Video(label="Video with Anomaly Heatmap")
|
42 |
|
43 |
df_store = gr.State()
|
44 |
mse_features_store = gr.State()
|
|
|
50 |
mse_heatmap_posture_store = gr.State()
|
51 |
mse_heatmap_voice_store = gr.State()
|
52 |
|
53 |
+
def show_results(outputs):
|
54 |
+
return gr.Group(visible=True)
|
55 |
+
|
56 |
process_btn.click(
|
57 |
process_and_show_completion,
|
58 |
inputs=[video_input, anomaly_threshold, fps_slider],
|
|
|
68 |
mse_heatmap_embeddings_store, mse_heatmap_posture_store, mse_heatmap_voice_store,
|
69 |
heatmap_video
|
70 |
]
|
71 |
+
).then(
|
72 |
+
show_results,
|
73 |
+
inputs=None,
|
74 |
+
outputs=results_group
|
75 |
)
|
76 |
|
77 |
if __name__ == "__main__":
|