Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -15,7 +15,7 @@ def process_and_show_completion(video_input_path, anomaly_threshold_input, fps,
|
|
| 15 |
|
| 16 |
if isinstance(results[0], str) and results[0].startswith("Error"):
|
| 17 |
print(f"Error occurred: {results[0]}")
|
| 18 |
-
return [results[0]] + [None] *
|
| 19 |
|
| 20 |
exec_time, results_summary, df, mse_embeddings, mse_posture, mse_voice, \
|
| 21 |
mse_plot_embeddings, mse_plot_posture, mse_plot_voice, \
|
|
@@ -24,19 +24,13 @@ def process_and_show_completion(video_input_path, anomaly_threshold_input, fps,
|
|
| 24 |
face_samples_frequent, \
|
| 25 |
anomaly_faces_embeddings, anomaly_frames_posture_images, \
|
| 26 |
aligned_faces_folder, frames_folder, \
|
| 27 |
-
heatmap_video_path = results
|
| 28 |
|
| 29 |
anomaly_faces_embeddings_pil = [Image.fromarray(face) for face in anomaly_faces_embeddings] if anomaly_faces_embeddings is not None else []
|
| 30 |
anomaly_frames_posture_pil = [Image.fromarray(frame) for frame in anomaly_frames_posture_images] if anomaly_frames_posture_images is not None else []
|
| 31 |
|
| 32 |
face_samples_frequent = [Image.open(path) for path in face_samples_frequent] if face_samples_frequent is not None else []
|
| 33 |
|
| 34 |
-
# Generate the correlation heatmap
|
| 35 |
-
correlation_heatmap = plot_correlation_heatmap(mse_embeddings, mse_posture, mse_voice)
|
| 36 |
-
|
| 37 |
-
# Generate the 3D scatter plot
|
| 38 |
-
scatter_plot_3d = plot_3d_scatter(mse_embeddings, mse_posture, mse_voice)
|
| 39 |
-
|
| 40 |
output = [
|
| 41 |
exec_time, results_summary,
|
| 42 |
df, mse_embeddings, mse_posture, mse_voice,
|
|
@@ -139,4 +133,4 @@ with gr.Blocks() as iface:
|
|
| 139 |
)
|
| 140 |
|
| 141 |
if __name__ == "__main__":
|
| 142 |
-
iface.launch()
|
|
|
|
| 15 |
|
| 16 |
if isinstance(results[0], str) and results[0].startswith("Error"):
|
| 17 |
print(f"Error occurred: {results[0]}")
|
| 18 |
+
return [results[0]] + [None] * 25 # Update the tuple size to match the number of outputs
|
| 19 |
|
| 20 |
exec_time, results_summary, df, mse_embeddings, mse_posture, mse_voice, \
|
| 21 |
mse_plot_embeddings, mse_plot_posture, mse_plot_voice, \
|
|
|
|
| 24 |
face_samples_frequent, \
|
| 25 |
anomaly_faces_embeddings, anomaly_frames_posture_images, \
|
| 26 |
aligned_faces_folder, frames_folder, \
|
| 27 |
+
heatmap_video_path, correlation_heatmap, scatter_plot_3d = results
|
| 28 |
|
| 29 |
anomaly_faces_embeddings_pil = [Image.fromarray(face) for face in anomaly_faces_embeddings] if anomaly_faces_embeddings is not None else []
|
| 30 |
anomaly_frames_posture_pil = [Image.fromarray(frame) for frame in anomaly_frames_posture_images] if anomaly_frames_posture_images is not None else []
|
| 31 |
|
| 32 |
face_samples_frequent = [Image.open(path) for path in face_samples_frequent] if face_samples_frequent is not None else []
|
| 33 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 34 |
output = [
|
| 35 |
exec_time, results_summary,
|
| 36 |
df, mse_embeddings, mse_posture, mse_voice,
|
|
|
|
| 133 |
)
|
| 134 |
|
| 135 |
if __name__ == "__main__":
|
| 136 |
+
iface.launch()
|