Update app.py
Browse files
app.py
CHANGED
@@ -1,3 +1,61 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
with gr.Blocks() as iface:
|
2 |
gr.Markdown("""
|
3 |
# Multimodal Behavioral Anomalies Detection
|
@@ -50,9 +108,6 @@ with gr.Blocks() as iface:
|
|
50 |
mse_heatmap_posture_store = gr.State()
|
51 |
mse_heatmap_voice_store = gr.State()
|
52 |
|
53 |
-
def show_results(outputs):
|
54 |
-
return gr.Group(visible=True)
|
55 |
-
|
56 |
process_btn.click(
|
57 |
process_and_show_completion,
|
58 |
inputs=[video_input, anomaly_threshold, fps_slider],
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import time
|
3 |
+
from video_processing import process_video
|
4 |
+
from PIL import Image
|
5 |
+
import matplotlib
|
6 |
+
|
7 |
+
matplotlib.rcParams['figure.dpi'] = 300
|
8 |
+
matplotlib.rcParams['savefig.dpi'] = 300
|
9 |
+
|
10 |
+
def process_and_show_completion(video_input_path, anomaly_threshold_input, fps, progress=gr.Progress()):
|
11 |
+
try:
|
12 |
+
print("Starting video processing...")
|
13 |
+
results = process_video(video_input_path, anomaly_threshold_input, fps, progress=progress)
|
14 |
+
print("Video processing completed.")
|
15 |
+
|
16 |
+
if isinstance(results[0], str) and results[0].startswith("Error"):
|
17 |
+
print(f"Error occurred: {results[0]}")
|
18 |
+
return [results[0]] + [None] * 23
|
19 |
+
|
20 |
+
exec_time, results_summary, df, mse_embeddings, mse_posture, mse_voice, \
|
21 |
+
mse_plot_embeddings, mse_plot_posture, mse_plot_voice, \
|
22 |
+
mse_histogram_embeddings, mse_histogram_posture, mse_histogram_voice, \
|
23 |
+
mse_heatmap_embeddings, mse_heatmap_posture, mse_heatmap_voice, \
|
24 |
+
face_samples_frequent, \
|
25 |
+
anomaly_faces_embeddings, anomaly_frames_posture_images, \
|
26 |
+
aligned_faces_folder, frames_folder, \
|
27 |
+
heatmap_video_path = results
|
28 |
+
|
29 |
+
anomaly_faces_embeddings_pil = [Image.fromarray(face) for face in anomaly_faces_embeddings] if anomaly_faces_embeddings is not None else []
|
30 |
+
anomaly_frames_posture_pil = [Image.fromarray(frame) for frame in anomaly_frames_posture_images] if anomaly_frames_posture_images is not None else []
|
31 |
+
|
32 |
+
face_samples_frequent = [Image.open(path) for path in face_samples_frequent] if face_samples_frequent is not None else []
|
33 |
+
|
34 |
+
output = [
|
35 |
+
exec_time, results_summary,
|
36 |
+
df, mse_embeddings, mse_posture, mse_voice,
|
37 |
+
mse_plot_embeddings, mse_plot_posture, mse_plot_voice,
|
38 |
+
mse_histogram_embeddings, mse_histogram_posture, mse_histogram_voice,
|
39 |
+
mse_heatmap_embeddings, mse_heatmap_posture, mse_heatmap_voice,
|
40 |
+
anomaly_faces_embeddings_pil, anomaly_frames_posture_pil,
|
41 |
+
face_samples_frequent,
|
42 |
+
aligned_faces_folder, frames_folder,
|
43 |
+
mse_embeddings, mse_posture, mse_voice,
|
44 |
+
heatmap_video_path
|
45 |
+
]
|
46 |
+
|
47 |
+
return output
|
48 |
+
|
49 |
+
except Exception as e:
|
50 |
+
error_message = f"An error occurred: {str(e)}"
|
51 |
+
print(error_message)
|
52 |
+
import traceback
|
53 |
+
traceback.print_exc()
|
54 |
+
return [error_message] + [None] * 23
|
55 |
+
|
56 |
+
def show_results(outputs):
|
57 |
+
return gr.Group(visible=True)
|
58 |
+
|
59 |
with gr.Blocks() as iface:
|
60 |
gr.Markdown("""
|
61 |
# Multimodal Behavioral Anomalies Detection
|
|
|
108 |
mse_heatmap_posture_store = gr.State()
|
109 |
mse_heatmap_voice_store = gr.State()
|
110 |
|
|
|
|
|
|
|
111 |
process_btn.click(
|
112 |
process_and_show_completion,
|
113 |
inputs=[video_input, anomaly_threshold, fps_slider],
|