Rename main.py to app.py
Browse files- main.py → app.py +154 -151
main.py → app.py
RENAMED
@@ -1,152 +1,155 @@
|
|
1 |
-
import gradio as gr
|
2 |
-
import time
|
3 |
-
from video_processing import process_video
|
4 |
-
from PIL import Image
|
5 |
-
import matplotlib
|
6 |
-
|
7 |
-
matplotlib.rcParams['
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
output += "
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
-
|
151 |
-
|
|
|
|
|
|
|
152 |
iface.launch()
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import time
|
3 |
+
from video_processing import process_video
|
4 |
+
from PIL import Image
|
5 |
+
import matplotlib
|
6 |
+
import spaces
|
7 |
+
matplotlib.rcParams['figure.dpi'] = 500
|
8 |
+
matplotlib.rcParams['savefig.dpi'] = 500
|
9 |
+
|
10 |
+
@spaces.GPU(duration=300)
|
11 |
+
|
12 |
+
def process_and_show_completion(video_input_path, anomaly_threshold_input, fps, progress=gr.Progress()):
|
13 |
+
try:
|
14 |
+
print("Starting video processing...")
|
15 |
+
results = process_video(video_input_path, anomaly_threshold_input, fps, progress=progress)
|
16 |
+
print("Video processing completed.")
|
17 |
+
|
18 |
+
if isinstance(results[0], str) and results[0].startswith("Error"):
|
19 |
+
print(f"Error occurred: {results[0]}")
|
20 |
+
return [results[0]] + [None] * 18
|
21 |
+
|
22 |
+
exec_time, results_summary, df, mse_embeddings, mse_posture, \
|
23 |
+
mse_plot_embeddings, mse_histogram_embeddings, \
|
24 |
+
mse_plot_posture, mse_histogram_posture, \
|
25 |
+
mse_heatmap_embeddings, mse_heatmap_posture, \
|
26 |
+
face_samples_frequent, face_samples_other, \
|
27 |
+
anomaly_faces_embeddings, anomaly_frames_posture_images, \
|
28 |
+
aligned_faces_folder, frames_folder, \
|
29 |
+
anomaly_sentences_features, anomaly_sentences_posture = results
|
30 |
+
|
31 |
+
anomaly_faces_embeddings_pil = [Image.fromarray(face) for face in anomaly_faces_embeddings]
|
32 |
+
anomaly_frames_posture_pil = [Image.fromarray(frame) for frame in anomaly_frames_posture_images]
|
33 |
+
|
34 |
+
face_samples_frequent = [Image.open(path) for path in face_samples_frequent]
|
35 |
+
face_samples_other = [Image.open(path) for path in face_samples_other]
|
36 |
+
|
37 |
+
anomaly_sentences_features, anomaly_sentences_posture = results[-2:]
|
38 |
+
|
39 |
+
# Format anomaly sentences output
|
40 |
+
sentences_features_output = format_anomaly_sentences(anomaly_sentences_features, "Facial Features")
|
41 |
+
sentences_posture_output = format_anomaly_sentences(anomaly_sentences_posture, "Body Posture")
|
42 |
+
|
43 |
+
output = [
|
44 |
+
exec_time, results_summary,
|
45 |
+
df, mse_embeddings, mse_posture,
|
46 |
+
mse_plot_embeddings, mse_plot_posture,
|
47 |
+
mse_histogram_embeddings, mse_histogram_posture,
|
48 |
+
mse_heatmap_embeddings, mse_heatmap_posture,
|
49 |
+
anomaly_faces_embeddings_pil, anomaly_frames_posture_pil,
|
50 |
+
face_samples_frequent, face_samples_other,
|
51 |
+
aligned_faces_folder, frames_folder,
|
52 |
+
mse_embeddings, mse_posture,
|
53 |
+
sentences_features_output, sentences_posture_output
|
54 |
+
]
|
55 |
+
|
56 |
+
return output
|
57 |
+
|
58 |
+
except Exception as e:
|
59 |
+
error_message = f"An error occurred: {str(e)}"
|
60 |
+
print(error_message)
|
61 |
+
import traceback
|
62 |
+
traceback.print_exc()
|
63 |
+
return [error_message] + [None] * 20
|
64 |
+
|
65 |
+
with gr.Blocks() as iface:
|
66 |
+
gr.Markdown("""
|
67 |
+
# Facial Expression and Body Language Anomaly Detection
|
68 |
+
|
69 |
+
This application analyzes videos to detect anomalies in facial features and body language.
|
70 |
+
It processes the video frames to extract facial embeddings and body posture,
|
71 |
+
then uses machine learning techniques to identify unusual patterns or deviations from the norm.
|
72 |
+
|
73 |
+
For more information, visit: [https://github.com/reab5555/Facial-Expression-Anomaly-Detection](https://github.com/reab5555/Facial-Expression-Anomaly-Detection)
|
74 |
+
""")
|
75 |
+
|
76 |
+
with gr.Row():
|
77 |
+
video_input = gr.Video()
|
78 |
+
|
79 |
+
anomaly_threshold = gr.Slider(minimum=1, maximum=5, step=0.1, value=3, label="Anomaly Detection Threshold")
|
80 |
+
fps_slider = gr.Slider(minimum=5, maximum=20, step=1, value=10, label="Frames Per Second")
|
81 |
+
process_btn = gr.Button("Detect Anomalies")
|
82 |
+
progress_bar = gr.Progress()
|
83 |
+
execution_time = gr.Number(label="Execution Time (seconds)")
|
84 |
+
|
85 |
+
with gr.Group(visible=False) as results_group:
|
86 |
+
results_text = gr.TextArea(label="Anomaly Detection Results", lines=4)
|
87 |
+
|
88 |
+
with gr.Tab("Facial Features"):
|
89 |
+
mse_features_plot = gr.Plot(label="MSE: Facial Features")
|
90 |
+
mse_features_hist = gr.Plot(label="MSE Distribution: Facial Features")
|
91 |
+
mse_features_heatmap = gr.Plot(label="MSE Heatmap: Facial Features")
|
92 |
+
anomaly_frames_features = gr.Gallery(label="Anomaly Frames (Facial Features)", columns=6, rows=2, height="auto")
|
93 |
+
|
94 |
+
with gr.Tab("Body Posture"):
|
95 |
+
mse_posture_plot = gr.Plot(label="MSE: Body Posture")
|
96 |
+
mse_posture_hist = gr.Plot(label="MSE Distribution: Body Posture")
|
97 |
+
mse_posture_heatmap = gr.Plot(label="MSE Heatmap: Body Posture")
|
98 |
+
anomaly_frames_posture = gr.Gallery(label="Anomaly Frames (Body Posture)", columns=6, rows=2, height="auto")
|
99 |
+
|
100 |
+
with gr.Tab("Sentences"):
|
101 |
+
with gr.Row():
|
102 |
+
anomaly_sentences_features_output = gr.Textbox(label="Sentences before Facial Feature Anomalies",
|
103 |
+
lines=10)
|
104 |
+
anomaly_frames_features = gr.Gallery(label="Anomaly Frames (Facial Features)", columns=6, rows=2,
|
105 |
+
height="auto")
|
106 |
+
|
107 |
+
with gr.Row():
|
108 |
+
anomaly_sentences_posture_output = gr.Textbox(label="Sentences before Body Posture Anomalies", lines=10)
|
109 |
+
anomaly_frames_posture = gr.Gallery(label="Anomaly Frames (Body Posture)", columns=6, rows=2,
|
110 |
+
height="auto")
|
111 |
+
|
112 |
+
with gr.Tab("Face Samples"):
|
113 |
+
face_samples_most_frequent = gr.Gallery(label="Most Frequent Person Samples (Target)", columns=6, rows=2, height="auto")
|
114 |
+
face_samples_others = gr.Gallery(label="Other Persons Samples", columns=6, rows=1, height="auto")
|
115 |
+
|
116 |
+
df_store = gr.State()
|
117 |
+
mse_features_store = gr.State()
|
118 |
+
mse_posture_store = gr.State()
|
119 |
+
aligned_faces_folder_store = gr.State()
|
120 |
+
frames_folder_store = gr.State()
|
121 |
+
mse_heatmap_embeddings_store = gr.State()
|
122 |
+
mse_heatmap_posture_store = gr.State()
|
123 |
+
|
124 |
+
def format_anomaly_sentences(anomaly_sentences, anomaly_type):
|
125 |
+
output = f"Sentences before {anomaly_type} Anomalies:\n\n"
|
126 |
+
for anomaly_timecode, sentences in anomaly_sentences:
|
127 |
+
output += f"Anomaly at {anomaly_timecode}:\n"
|
128 |
+
for sentence_timecode, sentence in sentences:
|
129 |
+
output += f" [{sentence_timecode}] {sentence}\n"
|
130 |
+
output += "\n"
|
131 |
+
return output
|
132 |
+
|
133 |
+
process_btn.click(
|
134 |
+
process_and_show_completion,
|
135 |
+
inputs=[video_input, anomaly_threshold, fps_slider],
|
136 |
+
outputs=[
|
137 |
+
execution_time, results_text, df_store,
|
138 |
+
mse_features_store, mse_posture_store,
|
139 |
+
mse_features_plot, mse_posture_plot,
|
140 |
+
mse_features_hist, mse_posture_hist,
|
141 |
+
mse_features_heatmap, mse_posture_heatmap,
|
142 |
+
anomaly_frames_features, anomaly_frames_posture,
|
143 |
+
face_samples_most_frequent, face_samples_others,
|
144 |
+
aligned_faces_folder_store, frames_folder_store,
|
145 |
+
mse_heatmap_embeddings_store, mse_heatmap_posture_store,
|
146 |
+
anomaly_sentences_features_output, anomaly_sentences_posture_output
|
147 |
+
]
|
148 |
+
).then(
|
149 |
+
lambda: gr.Group(visible=True),
|
150 |
+
inputs=None,
|
151 |
+
outputs=[results_group]
|
152 |
+
)
|
153 |
+
|
154 |
+
if __name__ == "__main__":
|
155 |
iface.launch()
|