reab5555 commited on
Commit
162ac6d
·
verified ·
1 Parent(s): ce8fdc1

Rename main.py to app.py

Browse files
Files changed (1) hide show
  1. main.py → app.py +154 -151
main.py → app.py RENAMED
@@ -1,152 +1,155 @@
1
- import gradio as gr
2
- import time
3
- from video_processing import process_video
4
- from PIL import Image
5
- import matplotlib
6
- matplotlib.rcParams['figure.dpi'] = 500
7
- matplotlib.rcParams['savefig.dpi'] = 500
8
-
9
- def process_and_show_completion(video_input_path, anomaly_threshold_input, fps, progress=gr.Progress()):
10
- try:
11
- print("Starting video processing...")
12
- results = process_video(video_input_path, anomaly_threshold_input, fps, progress=progress)
13
- print("Video processing completed.")
14
-
15
- if isinstance(results[0], str) and results[0].startswith("Error"):
16
- print(f"Error occurred: {results[0]}")
17
- return [results[0]] + [None] * 18
18
-
19
- exec_time, results_summary, df, mse_embeddings, mse_posture, \
20
- mse_plot_embeddings, mse_histogram_embeddings, \
21
- mse_plot_posture, mse_histogram_posture, \
22
- mse_heatmap_embeddings, mse_heatmap_posture, \
23
- face_samples_frequent, face_samples_other, \
24
- anomaly_faces_embeddings, anomaly_frames_posture_images, \
25
- aligned_faces_folder, frames_folder, \
26
- anomaly_sentences_features, anomaly_sentences_posture = results
27
-
28
- anomaly_faces_embeddings_pil = [Image.fromarray(face) for face in anomaly_faces_embeddings]
29
- anomaly_frames_posture_pil = [Image.fromarray(frame) for frame in anomaly_frames_posture_images]
30
-
31
- face_samples_frequent = [Image.open(path) for path in face_samples_frequent]
32
- face_samples_other = [Image.open(path) for path in face_samples_other]
33
-
34
- anomaly_sentences_features, anomaly_sentences_posture = results[-2:]
35
-
36
- # Format anomaly sentences output
37
- sentences_features_output = format_anomaly_sentences(anomaly_sentences_features, "Facial Features")
38
- sentences_posture_output = format_anomaly_sentences(anomaly_sentences_posture, "Body Posture")
39
-
40
- output = [
41
- exec_time, results_summary,
42
- df, mse_embeddings, mse_posture,
43
- mse_plot_embeddings, mse_plot_posture,
44
- mse_histogram_embeddings, mse_histogram_posture,
45
- mse_heatmap_embeddings, mse_heatmap_posture,
46
- anomaly_faces_embeddings_pil, anomaly_frames_posture_pil,
47
- face_samples_frequent, face_samples_other,
48
- aligned_faces_folder, frames_folder,
49
- mse_embeddings, mse_posture,
50
- sentences_features_output, sentences_posture_output
51
- ]
52
-
53
- return output
54
-
55
- except Exception as e:
56
- error_message = f"An error occurred: {str(e)}"
57
- print(error_message)
58
- import traceback
59
- traceback.print_exc()
60
- return [error_message] + [None] * 20
61
-
62
- with gr.Blocks() as iface:
63
- gr.Markdown("""
64
- # Facial Expression and Body Language Anomaly Detection
65
-
66
- This application analyzes videos to detect anomalies in facial features and body language.
67
- It processes the video frames to extract facial embeddings and body posture,
68
- then uses machine learning techniques to identify unusual patterns or deviations from the norm.
69
-
70
- For more information, visit: [https://github.com/reab5555/Facial-Expression-Anomaly-Detection](https://github.com/reab5555/Facial-Expression-Anomaly-Detection)
71
- """)
72
-
73
- with gr.Row():
74
- video_input = gr.Video()
75
-
76
- anomaly_threshold = gr.Slider(minimum=1, maximum=5, step=0.1, value=3, label="Anomaly Detection Threshold")
77
- fps_slider = gr.Slider(minimum=5, maximum=20, step=1, value=10, label="Frames Per Second")
78
- process_btn = gr.Button("Detect Anomalies")
79
- progress_bar = gr.Progress()
80
- execution_time = gr.Number(label="Execution Time (seconds)")
81
-
82
- with gr.Group(visible=False) as results_group:
83
- results_text = gr.TextArea(label="Anomaly Detection Results", lines=4)
84
-
85
- with gr.Tab("Facial Features"):
86
- mse_features_plot = gr.Plot(label="MSE: Facial Features")
87
- mse_features_hist = gr.Plot(label="MSE Distribution: Facial Features")
88
- mse_features_heatmap = gr.Plot(label="MSE Heatmap: Facial Features")
89
- anomaly_frames_features = gr.Gallery(label="Anomaly Frames (Facial Features)", columns=6, rows=2, height="auto")
90
-
91
- with gr.Tab("Body Posture"):
92
- mse_posture_plot = gr.Plot(label="MSE: Body Posture")
93
- mse_posture_hist = gr.Plot(label="MSE Distribution: Body Posture")
94
- mse_posture_heatmap = gr.Plot(label="MSE Heatmap: Body Posture")
95
- anomaly_frames_posture = gr.Gallery(label="Anomaly Frames (Body Posture)", columns=6, rows=2, height="auto")
96
-
97
- with gr.Tab("Sentences"):
98
- with gr.Row():
99
- anomaly_sentences_features_output = gr.Textbox(label="Sentences before Facial Feature Anomalies",
100
- lines=10)
101
- anomaly_frames_features = gr.Gallery(label="Anomaly Frames (Facial Features)", columns=6, rows=2,
102
- height="auto")
103
-
104
- with gr.Row():
105
- anomaly_sentences_posture_output = gr.Textbox(label="Sentences before Body Posture Anomalies", lines=10)
106
- anomaly_frames_posture = gr.Gallery(label="Anomaly Frames (Body Posture)", columns=6, rows=2,
107
- height="auto")
108
-
109
- with gr.Tab("Face Samples"):
110
- face_samples_most_frequent = gr.Gallery(label="Most Frequent Person Samples (Target)", columns=6, rows=2, height="auto")
111
- face_samples_others = gr.Gallery(label="Other Persons Samples", columns=6, rows=1, height="auto")
112
-
113
- df_store = gr.State()
114
- mse_features_store = gr.State()
115
- mse_posture_store = gr.State()
116
- aligned_faces_folder_store = gr.State()
117
- frames_folder_store = gr.State()
118
- mse_heatmap_embeddings_store = gr.State()
119
- mse_heatmap_posture_store = gr.State()
120
-
121
- def format_anomaly_sentences(anomaly_sentences, anomaly_type):
122
- output = f"Sentences before {anomaly_type} Anomalies:\n\n"
123
- for anomaly_timecode, sentences in anomaly_sentences:
124
- output += f"Anomaly at {anomaly_timecode}:\n"
125
- for sentence_timecode, sentence in sentences:
126
- output += f" [{sentence_timecode}] {sentence}\n"
127
- output += "\n"
128
- return output
129
-
130
- process_btn.click(
131
- process_and_show_completion,
132
- inputs=[video_input, anomaly_threshold, fps_slider],
133
- outputs=[
134
- execution_time, results_text, df_store,
135
- mse_features_store, mse_posture_store,
136
- mse_features_plot, mse_posture_plot,
137
- mse_features_hist, mse_posture_hist,
138
- mse_features_heatmap, mse_posture_heatmap,
139
- anomaly_frames_features, anomaly_frames_posture,
140
- face_samples_most_frequent, face_samples_others,
141
- aligned_faces_folder_store, frames_folder_store,
142
- mse_heatmap_embeddings_store, mse_heatmap_posture_store,
143
- anomaly_sentences_features_output, anomaly_sentences_posture_output
144
- ]
145
- ).then(
146
- lambda: gr.Group(visible=True),
147
- inputs=None,
148
- outputs=[results_group]
149
- )
150
-
151
- if __name__ == "__main__":
 
 
 
152
  iface.launch()
 
1
+ import gradio as gr
2
+ import time
3
+ from video_processing import process_video
4
+ from PIL import Image
5
+ import matplotlib
6
+ import spaces
7
+ matplotlib.rcParams['figure.dpi'] = 500
8
+ matplotlib.rcParams['savefig.dpi'] = 500
9
+
10
+ @spaces.GPU(duration=300)
11
+
12
+ def process_and_show_completion(video_input_path, anomaly_threshold_input, fps, progress=gr.Progress()):
13
+ try:
14
+ print("Starting video processing...")
15
+ results = process_video(video_input_path, anomaly_threshold_input, fps, progress=progress)
16
+ print("Video processing completed.")
17
+
18
+ if isinstance(results[0], str) and results[0].startswith("Error"):
19
+ print(f"Error occurred: {results[0]}")
20
+ return [results[0]] + [None] * 18
21
+
22
+ exec_time, results_summary, df, mse_embeddings, mse_posture, \
23
+ mse_plot_embeddings, mse_histogram_embeddings, \
24
+ mse_plot_posture, mse_histogram_posture, \
25
+ mse_heatmap_embeddings, mse_heatmap_posture, \
26
+ face_samples_frequent, face_samples_other, \
27
+ anomaly_faces_embeddings, anomaly_frames_posture_images, \
28
+ aligned_faces_folder, frames_folder, \
29
+ anomaly_sentences_features, anomaly_sentences_posture = results
30
+
31
+ anomaly_faces_embeddings_pil = [Image.fromarray(face) for face in anomaly_faces_embeddings]
32
+ anomaly_frames_posture_pil = [Image.fromarray(frame) for frame in anomaly_frames_posture_images]
33
+
34
+ face_samples_frequent = [Image.open(path) for path in face_samples_frequent]
35
+ face_samples_other = [Image.open(path) for path in face_samples_other]
36
+
37
+ anomaly_sentences_features, anomaly_sentences_posture = results[-2:]
38
+
39
+ # Format anomaly sentences output
40
+ sentences_features_output = format_anomaly_sentences(anomaly_sentences_features, "Facial Features")
41
+ sentences_posture_output = format_anomaly_sentences(anomaly_sentences_posture, "Body Posture")
42
+
43
+ output = [
44
+ exec_time, results_summary,
45
+ df, mse_embeddings, mse_posture,
46
+ mse_plot_embeddings, mse_plot_posture,
47
+ mse_histogram_embeddings, mse_histogram_posture,
48
+ mse_heatmap_embeddings, mse_heatmap_posture,
49
+ anomaly_faces_embeddings_pil, anomaly_frames_posture_pil,
50
+ face_samples_frequent, face_samples_other,
51
+ aligned_faces_folder, frames_folder,
52
+ mse_embeddings, mse_posture,
53
+ sentences_features_output, sentences_posture_output
54
+ ]
55
+
56
+ return output
57
+
58
+ except Exception as e:
59
+ error_message = f"An error occurred: {str(e)}"
60
+ print(error_message)
61
+ import traceback
62
+ traceback.print_exc()
63
+ return [error_message] + [None] * 20
64
+
65
+ with gr.Blocks() as iface:
66
+ gr.Markdown("""
67
+ # Facial Expression and Body Language Anomaly Detection
68
+
69
+ This application analyzes videos to detect anomalies in facial features and body language.
70
+ It processes the video frames to extract facial embeddings and body posture,
71
+ then uses machine learning techniques to identify unusual patterns or deviations from the norm.
72
+
73
+ For more information, visit: [https://github.com/reab5555/Facial-Expression-Anomaly-Detection](https://github.com/reab5555/Facial-Expression-Anomaly-Detection)
74
+ """)
75
+
76
+ with gr.Row():
77
+ video_input = gr.Video()
78
+
79
+ anomaly_threshold = gr.Slider(minimum=1, maximum=5, step=0.1, value=3, label="Anomaly Detection Threshold")
80
+ fps_slider = gr.Slider(minimum=5, maximum=20, step=1, value=10, label="Frames Per Second")
81
+ process_btn = gr.Button("Detect Anomalies")
82
+ progress_bar = gr.Progress()
83
+ execution_time = gr.Number(label="Execution Time (seconds)")
84
+
85
+ with gr.Group(visible=False) as results_group:
86
+ results_text = gr.TextArea(label="Anomaly Detection Results", lines=4)
87
+
88
+ with gr.Tab("Facial Features"):
89
+ mse_features_plot = gr.Plot(label="MSE: Facial Features")
90
+ mse_features_hist = gr.Plot(label="MSE Distribution: Facial Features")
91
+ mse_features_heatmap = gr.Plot(label="MSE Heatmap: Facial Features")
92
+ anomaly_frames_features = gr.Gallery(label="Anomaly Frames (Facial Features)", columns=6, rows=2, height="auto")
93
+
94
+ with gr.Tab("Body Posture"):
95
+ mse_posture_plot = gr.Plot(label="MSE: Body Posture")
96
+ mse_posture_hist = gr.Plot(label="MSE Distribution: Body Posture")
97
+ mse_posture_heatmap = gr.Plot(label="MSE Heatmap: Body Posture")
98
+ anomaly_frames_posture = gr.Gallery(label="Anomaly Frames (Body Posture)", columns=6, rows=2, height="auto")
99
+
100
+ with gr.Tab("Sentences"):
101
+ with gr.Row():
102
+ anomaly_sentences_features_output = gr.Textbox(label="Sentences before Facial Feature Anomalies",
103
+ lines=10)
104
+ anomaly_frames_features = gr.Gallery(label="Anomaly Frames (Facial Features)", columns=6, rows=2,
105
+ height="auto")
106
+
107
+ with gr.Row():
108
+ anomaly_sentences_posture_output = gr.Textbox(label="Sentences before Body Posture Anomalies", lines=10)
109
+ anomaly_frames_posture = gr.Gallery(label="Anomaly Frames (Body Posture)", columns=6, rows=2,
110
+ height="auto")
111
+
112
+ with gr.Tab("Face Samples"):
113
+ face_samples_most_frequent = gr.Gallery(label="Most Frequent Person Samples (Target)", columns=6, rows=2, height="auto")
114
+ face_samples_others = gr.Gallery(label="Other Persons Samples", columns=6, rows=1, height="auto")
115
+
116
+ df_store = gr.State()
117
+ mse_features_store = gr.State()
118
+ mse_posture_store = gr.State()
119
+ aligned_faces_folder_store = gr.State()
120
+ frames_folder_store = gr.State()
121
+ mse_heatmap_embeddings_store = gr.State()
122
+ mse_heatmap_posture_store = gr.State()
123
+
124
+ def format_anomaly_sentences(anomaly_sentences, anomaly_type):
125
+ output = f"Sentences before {anomaly_type} Anomalies:\n\n"
126
+ for anomaly_timecode, sentences in anomaly_sentences:
127
+ output += f"Anomaly at {anomaly_timecode}:\n"
128
+ for sentence_timecode, sentence in sentences:
129
+ output += f" [{sentence_timecode}] {sentence}\n"
130
+ output += "\n"
131
+ return output
132
+
133
+ process_btn.click(
134
+ process_and_show_completion,
135
+ inputs=[video_input, anomaly_threshold, fps_slider],
136
+ outputs=[
137
+ execution_time, results_text, df_store,
138
+ mse_features_store, mse_posture_store,
139
+ mse_features_plot, mse_posture_plot,
140
+ mse_features_hist, mse_posture_hist,
141
+ mse_features_heatmap, mse_posture_heatmap,
142
+ anomaly_frames_features, anomaly_frames_posture,
143
+ face_samples_most_frequent, face_samples_others,
144
+ aligned_faces_folder_store, frames_folder_store,
145
+ mse_heatmap_embeddings_store, mse_heatmap_posture_store,
146
+ anomaly_sentences_features_output, anomaly_sentences_posture_output
147
+ ]
148
+ ).then(
149
+ lambda: gr.Group(visible=True),
150
+ inputs=None,
151
+ outputs=[results_group]
152
+ )
153
+
154
+ if __name__ == "__main__":
155
  iface.launch()