Spaces:
Runtime error
Runtime error
Delete app.py
Browse files
app.py
DELETED
|
@@ -1,943 +0,0 @@
|
|
| 1 |
-
import math
|
| 2 |
-
import os
|
| 3 |
-
import cv2
|
| 4 |
-
import numpy as np
|
| 5 |
-
import torch
|
| 6 |
-
import torch.nn as nn
|
| 7 |
-
import torch.optim as optim
|
| 8 |
-
from facenet_pytorch import InceptionResnetV1, MTCNN
|
| 9 |
-
import tensorflow as tf
|
| 10 |
-
import mediapipe as mp
|
| 11 |
-
from sklearn.cluster import DBSCAN
|
| 12 |
-
from sklearn.preprocessing import StandardScaler, MinMaxScaler
|
| 13 |
-
import pandas as pd
|
| 14 |
-
import matplotlib
|
| 15 |
-
import matplotlib.pyplot as plt
|
| 16 |
-
import seaborn as sns
|
| 17 |
-
from matplotlib.patches import Rectangle
|
| 18 |
-
from moviepy.editor import VideoFileClip
|
| 19 |
-
from PIL import Image, ImageDraw, ImageFont
|
| 20 |
-
import gradio as gr
|
| 21 |
-
import tempfile
|
| 22 |
-
import shutil
|
| 23 |
-
import time
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
matplotlib.rcParams['figure.dpi'] = 400
|
| 27 |
-
matplotlib.rcParams['savefig.dpi'] = 400
|
| 28 |
-
|
| 29 |
-
# Initialize models and other global variables
|
| 30 |
-
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 31 |
-
|
| 32 |
-
FIXED_FPS = 5
|
| 33 |
-
|
| 34 |
-
mtcnn = MTCNN(keep_all=False, device=device, thresholds=[0.95, 0.95, 0.95], min_face_size=80)
|
| 35 |
-
model = InceptionResnetV1(pretrained='vggface2').eval().to(device)
|
| 36 |
-
|
| 37 |
-
mp_face_mesh = mp.solutions.face_mesh
|
| 38 |
-
face_mesh = mp_face_mesh.FaceMesh(static_image_mode=False, max_num_faces=1, min_detection_confidence=0.8)
|
| 39 |
-
|
| 40 |
-
mp_pose = mp.solutions.pose
|
| 41 |
-
mp_drawing = mp.solutions.drawing_utils
|
| 42 |
-
pose = mp_pose.Pose(static_image_mode=False, min_detection_confidence=0.8, min_tracking_confidence=0.8)
|
| 43 |
-
|
| 44 |
-
def frame_to_timecode(frame_num, total_frames, duration):
|
| 45 |
-
total_seconds = (frame_num / total_frames) * duration
|
| 46 |
-
hours = int(total_seconds // 3600)
|
| 47 |
-
minutes = int((total_seconds % 3600) // 60)
|
| 48 |
-
seconds = int(total_seconds % 60)
|
| 49 |
-
milliseconds = int((total_seconds - int(total_seconds)) * 1000)
|
| 50 |
-
return f"{hours:02d}:{minutes:02d}:{seconds:02d}.{milliseconds:03d}"
|
| 51 |
-
|
| 52 |
-
def seconds_to_timecode(seconds):
|
| 53 |
-
hours = int(seconds // 3600)
|
| 54 |
-
minutes = int((seconds % 3600) // 60)
|
| 55 |
-
seconds = int(seconds % 60)
|
| 56 |
-
return f"{hours:02d}:{minutes:02d}:{seconds:02d}"
|
| 57 |
-
|
| 58 |
-
def timecode_to_seconds(timecode):
|
| 59 |
-
h, m, s = map(int, timecode.split(':'))
|
| 60 |
-
return h * 3600 + m * 60 + s
|
| 61 |
-
|
| 62 |
-
def get_face_embedding(face_img):
|
| 63 |
-
face_tensor = torch.tensor(face_img).permute(2, 0, 1).unsqueeze(0).float() / 255
|
| 64 |
-
face_tensor = (face_tensor - 0.5) / 0.5
|
| 65 |
-
face_tensor = face_tensor.to(device)
|
| 66 |
-
with torch.no_grad():
|
| 67 |
-
embedding = model(face_tensor)
|
| 68 |
-
return embedding.cpu().numpy().flatten()
|
| 69 |
-
|
| 70 |
-
def alignFace(img):
|
| 71 |
-
img_raw = img.copy()
|
| 72 |
-
results = face_mesh.process(cv2.cvtColor(img, cv2.COLOR_BGR2RGB))
|
| 73 |
-
if not results.multi_face_landmarks:
|
| 74 |
-
return None
|
| 75 |
-
landmarks = results.multi_face_landmarks[0].landmark
|
| 76 |
-
left_eye = np.array([[landmarks[33].x, landmarks[33].y], [landmarks[160].x, landmarks[160].y],
|
| 77 |
-
[landmarks[158].x, landmarks[158].y], [landmarks[144].x, landmarks[144].y],
|
| 78 |
-
[landmarks[153].x, landmarks[153].y], [landmarks[145].x, landmarks[145].y]])
|
| 79 |
-
right_eye = np.array([[landmarks[362].x, landmarks[362].y], [landmarks[385].x, landmarks[385].y],
|
| 80 |
-
[landmarks[387].x, landmarks[387].y], [landmarks[263].x, landmarks[263].y],
|
| 81 |
-
[landmarks[373].x, landmarks[373].y], [landmarks[380].x, landmarks[380].y]])
|
| 82 |
-
left_eye_center = left_eye.mean(axis=0).astype(np.int32)
|
| 83 |
-
right_eye_center = right_eye.mean(axis=0).astype(np.int32)
|
| 84 |
-
dY = right_eye_center[1] - left_eye_center[1]
|
| 85 |
-
dX = right_eye_center[0] - left_eye_center[0]
|
| 86 |
-
angle = np.degrees(np.arctan2(dY, dX))
|
| 87 |
-
desired_angle = 0
|
| 88 |
-
angle_diff = desired_angle - angle
|
| 89 |
-
height, width = img_raw.shape[:2]
|
| 90 |
-
center = (width // 2, height // 2)
|
| 91 |
-
rotation_matrix = cv2.getRotationMatrix2D(center, angle_diff, 1)
|
| 92 |
-
new_img = cv2.warpAffine(img_raw, rotation_matrix, (width, height))
|
| 93 |
-
return new_img
|
| 94 |
-
|
| 95 |
-
def calculate_posture_score(frame):
|
| 96 |
-
image_height, image_width, _ = frame.shape
|
| 97 |
-
results = pose.process(cv2.cvtColor(frame, cv2.COLOR_BGR2RGB))
|
| 98 |
-
|
| 99 |
-
if not results.pose_landmarks:
|
| 100 |
-
return None, None
|
| 101 |
-
|
| 102 |
-
landmarks = results.pose_landmarks.landmark
|
| 103 |
-
|
| 104 |
-
# Use only body landmarks
|
| 105 |
-
left_shoulder = landmarks[mp_pose.PoseLandmark.LEFT_SHOULDER.value]
|
| 106 |
-
right_shoulder = landmarks[mp_pose.PoseLandmark.RIGHT_SHOULDER.value]
|
| 107 |
-
left_hip = landmarks[mp_pose.PoseLandmark.LEFT_HIP.value]
|
| 108 |
-
right_hip = landmarks[mp_pose.PoseLandmark.RIGHT_HIP.value]
|
| 109 |
-
left_knee = landmarks[mp_pose.PoseLandmark.LEFT_KNEE.value]
|
| 110 |
-
right_knee = landmarks[mp_pose.PoseLandmark.RIGHT_KNEE.value]
|
| 111 |
-
|
| 112 |
-
# Calculate angles
|
| 113 |
-
shoulder_angle = abs(math.degrees(math.atan2(right_shoulder.y - left_shoulder.y, right_shoulder.x - left_shoulder.x)))
|
| 114 |
-
hip_angle = abs(math.degrees(math.atan2(right_hip.y - left_hip.y, right_hip.x - left_hip.x)))
|
| 115 |
-
knee_angle = abs(math.degrees(math.atan2(right_knee.y - left_knee.y, right_knee.x - left_knee.x)))
|
| 116 |
-
|
| 117 |
-
# Calculate vertical alignment
|
| 118 |
-
shoulder_hip_alignment = abs((left_shoulder.y + right_shoulder.y) / 2 - (left_hip.y + right_hip.y) / 2)
|
| 119 |
-
hip_knee_alignment = abs((left_hip.y + right_hip.y) / 2 - (left_knee.y + right_knee.y) / 2)
|
| 120 |
-
# Add head landmarks
|
| 121 |
-
nose = landmarks[mp_pose.PoseLandmark.NOSE.value]
|
| 122 |
-
left_ear = landmarks[mp_pose.PoseLandmark.LEFT_EAR.value]
|
| 123 |
-
right_ear = landmarks[mp_pose.PoseLandmark.RIGHT_EAR.value]
|
| 124 |
-
# Calculate head tilt
|
| 125 |
-
head_tilt = abs(math.degrees(math.atan2(right_ear.y - left_ear.y, right_ear.x - left_ear.x)))
|
| 126 |
-
# Calculate head position relative to shoulders
|
| 127 |
-
head_position = abs((nose.y - (left_shoulder.y + right_shoulder.y) / 2) /
|
| 128 |
-
((left_shoulder.y + right_shoulder.y) / 2 - (left_hip.y + right_hip.y) / 2))
|
| 129 |
-
|
| 130 |
-
# Combine metrics into a single posture score (you may need to adjust these weights)
|
| 131 |
-
posture_score = (
|
| 132 |
-
(1 - abs(shoulder_angle - hip_angle) / 90) * 0.3 +
|
| 133 |
-
(1 - abs(hip_angle - knee_angle) / 90) * 0.2 +
|
| 134 |
-
(1 - shoulder_hip_alignment) * 0.1 +
|
| 135 |
-
(1 - hip_knee_alignment) * 0.1 +
|
| 136 |
-
(1 - abs(head_tilt - 90) / 90) * 0.15 +
|
| 137 |
-
(1 - head_position) * 0.15
|
| 138 |
-
)
|
| 139 |
-
|
| 140 |
-
return posture_score, results.pose_landmarks
|
| 141 |
-
|
| 142 |
-
def extract_frames(video_path, output_folder, desired_fps, progress_callback=None):
|
| 143 |
-
os.makedirs(output_folder, exist_ok=True)
|
| 144 |
-
clip = VideoFileClip(video_path)
|
| 145 |
-
original_fps = clip.fps
|
| 146 |
-
duration = clip.duration
|
| 147 |
-
total_frames = int(duration * original_fps)
|
| 148 |
-
step = max(1, original_fps / desired_fps)
|
| 149 |
-
total_frames_to_extract = int(total_frames / step)
|
| 150 |
-
|
| 151 |
-
frame_count = 0
|
| 152 |
-
for t in np.arange(0, duration, step / original_fps):
|
| 153 |
-
frame = clip.get_frame(t)
|
| 154 |
-
img = Image.fromarray(frame)
|
| 155 |
-
img.save(os.path.join(output_folder, f"frame_{frame_count:04d}.jpg"))
|
| 156 |
-
frame_count += 1
|
| 157 |
-
if progress_callback:
|
| 158 |
-
progress = min(100, (frame_count / total_frames_to_extract) * 100)
|
| 159 |
-
progress_callback(progress, f"Extracting frame")
|
| 160 |
-
if frame_count >= total_frames_to_extract:
|
| 161 |
-
break
|
| 162 |
-
clip.close()
|
| 163 |
-
return frame_count, original_fps
|
| 164 |
-
|
| 165 |
-
def is_frontal_face(landmarks, threshold=40):
|
| 166 |
-
nose_tip = landmarks[4]
|
| 167 |
-
left_chin = landmarks[234]
|
| 168 |
-
right_chin = landmarks[454]
|
| 169 |
-
nose_to_left = [left_chin.x - nose_tip.x, left_chin.y - nose_tip.y]
|
| 170 |
-
nose_to_right = [right_chin.x - nose_tip.x, right_chin.y - nose_tip.y]
|
| 171 |
-
dot_product = nose_to_left[0] * nose_to_right[0] + nose_to_left[1] * nose_to_right[1]
|
| 172 |
-
magnitude_left = math.sqrt(nose_to_left[0] ** 2 + nose_to_left[1] ** 2)
|
| 173 |
-
magnitude_right = math.sqrt(nose_to_right[0] ** 2 + nose_to_right[1] ** 2)
|
| 174 |
-
cos_angle = dot_product / (magnitude_left * magnitude_right)
|
| 175 |
-
angle = math.acos(cos_angle)
|
| 176 |
-
angle_degrees = math.degrees(angle)
|
| 177 |
-
return abs(180 - angle_degrees) < threshold
|
| 178 |
-
|
| 179 |
-
|
| 180 |
-
def process_frames(frames_folder, aligned_faces_folder, frame_count, progress, batch_size):
|
| 181 |
-
embeddings_by_frame = {}
|
| 182 |
-
emotions_by_frame = {}
|
| 183 |
-
posture_scores_by_frame = {}
|
| 184 |
-
posture_landmarks_by_frame = {}
|
| 185 |
-
aligned_face_paths = []
|
| 186 |
-
frame_files = sorted([f for f in os.listdir(frames_folder) if f.endswith('.jpg')])
|
| 187 |
-
|
| 188 |
-
for i in range(0, len(frame_files), batch_size):
|
| 189 |
-
batch_files = frame_files[i:i + batch_size]
|
| 190 |
-
batch_frames = []
|
| 191 |
-
batch_nums = []
|
| 192 |
-
|
| 193 |
-
for frame_file in batch_files:
|
| 194 |
-
frame_num = int(frame_file.split('_')[1].split('.')[0])
|
| 195 |
-
frame_path = os.path.join(frames_folder, frame_file)
|
| 196 |
-
frame = cv2.imread(frame_path)
|
| 197 |
-
if frame is not None:
|
| 198 |
-
batch_frames.append(frame)
|
| 199 |
-
batch_nums.append(frame_num)
|
| 200 |
-
|
| 201 |
-
if batch_frames:
|
| 202 |
-
batch_boxes, batch_probs = mtcnn.detect(batch_frames)
|
| 203 |
-
|
| 204 |
-
for j, (frame, frame_num, boxes, probs) in enumerate(
|
| 205 |
-
zip(batch_frames, batch_nums, batch_boxes, batch_probs)):
|
| 206 |
-
|
| 207 |
-
# Calculate posture score for the full frame
|
| 208 |
-
posture_score, posture_landmarks = calculate_posture_score(frame)
|
| 209 |
-
posture_scores_by_frame[frame_num] = posture_score
|
| 210 |
-
posture_landmarks_by_frame[frame_num] = posture_landmarks
|
| 211 |
-
|
| 212 |
-
if boxes is not None and len(boxes) > 0 and probs[0] >= 0.99:
|
| 213 |
-
x1, y1, x2, y2 = [int(b) for b in boxes[0]]
|
| 214 |
-
face = frame[y1:y2, x1:x2]
|
| 215 |
-
if face.size > 0:
|
| 216 |
-
results = face_mesh.process(cv2.cvtColor(face, cv2.COLOR_BGR2RGB))
|
| 217 |
-
if results.multi_face_landmarks and is_frontal_face(results.multi_face_landmarks[0].landmark):
|
| 218 |
-
|
| 219 |
-
#aligned_face = alignFace(face)
|
| 220 |
-
aligned_face = face
|
| 221 |
-
|
| 222 |
-
if aligned_face is not None:
|
| 223 |
-
aligned_face_resized = cv2.resize(aligned_face, (160, 160))
|
| 224 |
-
output_path = os.path.join(aligned_faces_folder, f"frame_{frame_num}_face.jpg")
|
| 225 |
-
cv2.imwrite(output_path, aligned_face_resized)
|
| 226 |
-
aligned_face_paths.append(output_path)
|
| 227 |
-
embedding = get_face_embedding(aligned_face_resized)
|
| 228 |
-
embeddings_by_frame[frame_num] = embedding
|
| 229 |
-
|
| 230 |
-
progress((i + len(batch_files)) / len(frame_files),
|
| 231 |
-
f"Processing frames {i + 1} to {min(i + len(batch_files), len(frame_files))} of {len(frame_files)}")
|
| 232 |
-
|
| 233 |
-
return embeddings_by_frame, posture_scores_by_frame, posture_landmarks_by_frame, aligned_face_paths
|
| 234 |
-
|
| 235 |
-
|
| 236 |
-
def cluster_faces(embeddings):
|
| 237 |
-
if len(embeddings) < 2:
|
| 238 |
-
print("Not enough faces for clustering. Assigning all to one cluster.")
|
| 239 |
-
return np.zeros(len(embeddings), dtype=int)
|
| 240 |
-
|
| 241 |
-
X = np.stack(embeddings)
|
| 242 |
-
dbscan = DBSCAN(eps=0.5, min_samples=5, metric='cosine')
|
| 243 |
-
clusters = dbscan.fit_predict(X)
|
| 244 |
-
|
| 245 |
-
if np.all(clusters == -1):
|
| 246 |
-
print("DBSCAN assigned all to noise. Considering as one cluster.")
|
| 247 |
-
return np.zeros(len(embeddings), dtype=int)
|
| 248 |
-
|
| 249 |
-
return clusters
|
| 250 |
-
|
| 251 |
-
def organize_faces_by_person(embeddings_by_frame, clusters, aligned_faces_folder, organized_faces_folder):
|
| 252 |
-
for (frame_num, embedding), cluster in zip(embeddings_by_frame.items(), clusters):
|
| 253 |
-
person_folder = os.path.join(organized_faces_folder, f"person_{cluster}")
|
| 254 |
-
os.makedirs(person_folder, exist_ok=True)
|
| 255 |
-
src = os.path.join(aligned_faces_folder, f"frame_{frame_num}_face.jpg")
|
| 256 |
-
dst = os.path.join(person_folder, f"frame_{frame_num}_face.jpg")
|
| 257 |
-
shutil.copy(src, dst)
|
| 258 |
-
|
| 259 |
-
def save_person_data_to_csv(embeddings_by_frame, clusters, desired_fps, original_fps, output_folder, video_duration):
|
| 260 |
-
person_data = {}
|
| 261 |
-
|
| 262 |
-
for (frame_num, embedding), cluster in zip(embeddings_by_frame.items(), clusters):
|
| 263 |
-
if cluster not in person_data:
|
| 264 |
-
person_data[cluster] = []
|
| 265 |
-
person_data[cluster].append((frame_num, embedding))
|
| 266 |
-
|
| 267 |
-
largest_cluster = max(person_data, key=lambda k: len(person_data[k]))
|
| 268 |
-
|
| 269 |
-
data = person_data[largest_cluster]
|
| 270 |
-
data.sort(key=lambda x: x[0])
|
| 271 |
-
frames, embeddings = zip(*data)
|
| 272 |
-
|
| 273 |
-
embeddings_array = np.array(embeddings)
|
| 274 |
-
np.save(os.path.join(output_folder, 'face_embeddings.npy'), embeddings_array)
|
| 275 |
-
|
| 276 |
-
total_frames = max(frames)
|
| 277 |
-
timecodes = [frame_to_timecode(frame, total_frames, video_duration) for frame in frames]
|
| 278 |
-
|
| 279 |
-
df_data = {
|
| 280 |
-
'Frame': frames,
|
| 281 |
-
'Timecode': timecodes,
|
| 282 |
-
'Embedding_Index': range(len(embeddings))
|
| 283 |
-
}
|
| 284 |
-
|
| 285 |
-
for i in range(len(embeddings[0])):
|
| 286 |
-
df_data[f'Raw_Embedding_{i}'] = [embedding[i] for embedding in embeddings]
|
| 287 |
-
|
| 288 |
-
df = pd.DataFrame(df_data)
|
| 289 |
-
|
| 290 |
-
return df, largest_cluster
|
| 291 |
-
|
| 292 |
-
class Autoencoder(nn.Module):
|
| 293 |
-
def __init__(self, input_size):
|
| 294 |
-
super(Autoencoder, self).__init__()
|
| 295 |
-
self.encoder = nn.Sequential(
|
| 296 |
-
nn.Linear(input_size, 256),
|
| 297 |
-
nn.ReLU(),
|
| 298 |
-
nn.Linear(256, 128),
|
| 299 |
-
nn.ReLU(),
|
| 300 |
-
nn.Linear(128, 64),
|
| 301 |
-
nn.ReLU(),
|
| 302 |
-
nn.Linear(64, 32)
|
| 303 |
-
)
|
| 304 |
-
self.decoder = nn.Sequential(
|
| 305 |
-
nn.Linear(32, 64),
|
| 306 |
-
nn.ReLU(),
|
| 307 |
-
nn.Linear(64, 128),
|
| 308 |
-
nn.ReLU(),
|
| 309 |
-
nn.Linear(128, 256),
|
| 310 |
-
nn.ReLU(),
|
| 311 |
-
nn.Linear(256, input_size)
|
| 312 |
-
)
|
| 313 |
-
|
| 314 |
-
def forward(self, x):
|
| 315 |
-
batch_size, seq_len, _ = x.size()
|
| 316 |
-
x = x.view(batch_size * seq_len, -1)
|
| 317 |
-
encoded = self.encoder(x)
|
| 318 |
-
decoded = self.decoder(encoded)
|
| 319 |
-
return decoded.view(batch_size, seq_len, -1)
|
| 320 |
-
|
| 321 |
-
def determine_anomalies(mse_values, threshold):
|
| 322 |
-
mean = np.mean(mse_values)
|
| 323 |
-
std = np.std(mse_values)
|
| 324 |
-
anomalies = mse_values > (mean + threshold * std)
|
| 325 |
-
return anomalies
|
| 326 |
-
|
| 327 |
-
def anomaly_detection(X_embeddings, X_posture, epochs=200, batch_size=8, patience=5):
|
| 328 |
-
# Normalize posture
|
| 329 |
-
scaler_posture = MinMaxScaler()
|
| 330 |
-
X_posture_scaled = scaler_posture.fit_transform(X_posture.reshape(-1, 1))
|
| 331 |
-
|
| 332 |
-
# Process facial embeddings
|
| 333 |
-
X_embeddings = torch.FloatTensor(X_embeddings).to(device)
|
| 334 |
-
if X_embeddings.dim() == 2:
|
| 335 |
-
X_embeddings = X_embeddings.unsqueeze(0)
|
| 336 |
-
|
| 337 |
-
# Process posture
|
| 338 |
-
X_posture_scaled = torch.FloatTensor(X_posture_scaled).to(device)
|
| 339 |
-
if X_posture_scaled.dim() == 2:
|
| 340 |
-
X_posture_scaled = X_posture_scaled.unsqueeze(0)
|
| 341 |
-
|
| 342 |
-
model_embeddings = Autoencoder(input_size=X_embeddings.shape[2]).to(device)
|
| 343 |
-
model_posture = Autoencoder(input_size=X_posture_scaled.shape[2]).to(device)
|
| 344 |
-
|
| 345 |
-
criterion = nn.MSELoss()
|
| 346 |
-
optimizer_embeddings = optim.Adam(model_embeddings.parameters())
|
| 347 |
-
optimizer_posture = optim.Adam(model_posture.parameters())
|
| 348 |
-
|
| 349 |
-
# Train models
|
| 350 |
-
for epoch in range(epochs):
|
| 351 |
-
for model, optimizer, X in [(model_embeddings, optimizer_embeddings, X_embeddings),
|
| 352 |
-
(model_posture, optimizer_posture, X_posture_scaled)]:
|
| 353 |
-
model.train()
|
| 354 |
-
optimizer.zero_grad()
|
| 355 |
-
output = model(X)
|
| 356 |
-
loss = criterion(output, X)
|
| 357 |
-
loss.backward()
|
| 358 |
-
optimizer.step()
|
| 359 |
-
|
| 360 |
-
# Compute MSE for embeddings and posture
|
| 361 |
-
model_embeddings.eval()
|
| 362 |
-
model_posture.eval()
|
| 363 |
-
with torch.no_grad():
|
| 364 |
-
reconstructed_embeddings = model_embeddings(X_embeddings).cpu().numpy()
|
| 365 |
-
reconstructed_posture = model_posture(X_posture_scaled).cpu().numpy()
|
| 366 |
-
|
| 367 |
-
mse_embeddings = np.mean(np.power(X_embeddings.cpu().numpy() - reconstructed_embeddings, 2), axis=2).squeeze()
|
| 368 |
-
mse_posture = np.mean(np.power(X_posture_scaled.cpu().numpy() - reconstructed_posture, 2), axis=2).squeeze()
|
| 369 |
-
|
| 370 |
-
return mse_embeddings, mse_posture
|
| 371 |
-
|
| 372 |
-
def plot_mse(df, mse_values, title, color='navy', time_threshold=3, anomaly_threshold=4):
|
| 373 |
-
plt.figure(figsize=(16, 8), dpi=400)
|
| 374 |
-
fig, ax = plt.subplots(figsize=(16, 8))
|
| 375 |
-
|
| 376 |
-
if 'Seconds' not in df.columns:
|
| 377 |
-
df['Seconds'] = df['Timecode'].apply(
|
| 378 |
-
lambda x: sum(float(t) * 60 ** i for i, t in enumerate(reversed(x.split(':')))))
|
| 379 |
-
|
| 380 |
-
# Ensure df and mse_values have the same length and remove NaN values
|
| 381 |
-
min_length = min(len(df), len(mse_values))
|
| 382 |
-
df = df.iloc[:min_length]
|
| 383 |
-
mse_values = mse_values[:min_length]
|
| 384 |
-
|
| 385 |
-
# Remove NaN values
|
| 386 |
-
mask = ~np.isnan(mse_values)
|
| 387 |
-
df = df[mask]
|
| 388 |
-
mse_values = mse_values[mask]
|
| 389 |
-
|
| 390 |
-
mean = pd.Series(mse_values).rolling(window=10).mean()
|
| 391 |
-
std = pd.Series(mse_values).rolling(window=10).std()
|
| 392 |
-
median = np.median(mse_values)
|
| 393 |
-
|
| 394 |
-
ax.scatter(df['Seconds'], mse_values, color=color, alpha=0.3, s=5)
|
| 395 |
-
ax.plot(df['Seconds'], mean, color=color, linewidth=0.5)
|
| 396 |
-
ax.fill_between(df['Seconds'], mean - std, mean + std, color=color, alpha=0.1)
|
| 397 |
-
|
| 398 |
-
# Add median line
|
| 399 |
-
ax.axhline(y=median, color='black', linestyle='--', label='Median Baseline')
|
| 400 |
-
|
| 401 |
-
# Add threshold line
|
| 402 |
-
threshold = np.mean(mse_values) + anomaly_threshold * np.std(mse_values)
|
| 403 |
-
ax.axhline(y=threshold, color='red', linestyle='--', label=f'Threshold: {anomaly_threshold:.1f}')
|
| 404 |
-
ax.text(ax.get_xlim()[1], threshold, f'Threshold: {anomaly_threshold:.1f}', verticalalignment='center', horizontalalignment='left', color='red')
|
| 405 |
-
|
| 406 |
-
anomalies = determine_anomalies(mse_values, anomaly_threshold)
|
| 407 |
-
anomaly_frames = df['Frame'].iloc[anomalies].tolist()
|
| 408 |
-
|
| 409 |
-
ax.scatter(df['Seconds'].iloc[anomalies], mse_values[anomalies], color='red', s=20, zorder=5)
|
| 410 |
-
|
| 411 |
-
anomaly_data = list(zip(df['Timecode'].iloc[anomalies],
|
| 412 |
-
df['Seconds'].iloc[anomalies],
|
| 413 |
-
mse_values[anomalies]))
|
| 414 |
-
anomaly_data.sort(key=lambda x: x[1])
|
| 415 |
-
|
| 416 |
-
grouped_anomalies = []
|
| 417 |
-
current_group = []
|
| 418 |
-
for timecode, sec, mse in anomaly_data:
|
| 419 |
-
if not current_group or sec - current_group[-1][1] <= time_threshold:
|
| 420 |
-
current_group.append((timecode, sec, mse))
|
| 421 |
-
else:
|
| 422 |
-
grouped_anomalies.append(current_group)
|
| 423 |
-
current_group = [(timecode, sec, mse)]
|
| 424 |
-
if current_group:
|
| 425 |
-
grouped_anomalies.append(current_group)
|
| 426 |
-
|
| 427 |
-
for group in grouped_anomalies:
|
| 428 |
-
start_sec = group[0][1]
|
| 429 |
-
end_sec = group[-1][1]
|
| 430 |
-
rect = Rectangle((start_sec, ax.get_ylim()[0]), end_sec - start_sec, ax.get_ylim()[1] - ax.get_ylim()[0],
|
| 431 |
-
facecolor='red', alpha=0.2, zorder=1)
|
| 432 |
-
ax.add_patch(rect)
|
| 433 |
-
|
| 434 |
-
for group in grouped_anomalies:
|
| 435 |
-
highest_mse_anomaly = max(group, key=lambda x: x[2])
|
| 436 |
-
timecode, sec, mse = highest_mse_anomaly
|
| 437 |
-
ax.annotate(timecode, (sec, mse), textcoords="offset points", xytext=(0, 10),
|
| 438 |
-
ha='center', fontsize=6, color='red')
|
| 439 |
-
|
| 440 |
-
max_seconds = df['Seconds'].max()
|
| 441 |
-
num_ticks = 100
|
| 442 |
-
tick_locations = np.linspace(0, max_seconds, num_ticks)
|
| 443 |
-
tick_labels = [seconds_to_timecode(int(s)) for s in tick_locations]
|
| 444 |
-
|
| 445 |
-
ax.set_xticks(tick_locations)
|
| 446 |
-
ax.set_xticklabels(tick_labels, rotation=90, ha='center', fontsize=6)
|
| 447 |
-
|
| 448 |
-
ax.set_xlabel('Timecode')
|
| 449 |
-
ax.set_ylabel('Mean Squared Error')
|
| 450 |
-
ax.set_title(title)
|
| 451 |
-
|
| 452 |
-
ax.grid(True, linestyle='--', alpha=0.7)
|
| 453 |
-
ax.legend()
|
| 454 |
-
plt.tight_layout()
|
| 455 |
-
plt.close()
|
| 456 |
-
return fig, anomaly_frames
|
| 457 |
-
|
| 458 |
-
def plot_mse_histogram(mse_values, title, anomaly_threshold, color='blue'):
|
| 459 |
-
plt.figure(figsize=(16, 4), dpi=400)
|
| 460 |
-
fig, ax = plt.subplots(figsize=(16, 4))
|
| 461 |
-
|
| 462 |
-
ax.hist(mse_values, bins=100, edgecolor='black', color=color, alpha=0.7)
|
| 463 |
-
ax.set_xlabel('Mean Squared Error')
|
| 464 |
-
ax.set_ylabel('Number of Samples')
|
| 465 |
-
ax.set_title(title)
|
| 466 |
-
|
| 467 |
-
mean = np.mean(mse_values)
|
| 468 |
-
std = np.std(mse_values)
|
| 469 |
-
threshold = mean + anomaly_threshold * std
|
| 470 |
-
|
| 471 |
-
ax.axvline(x=threshold, color='red', linestyle='--', linewidth=2)
|
| 472 |
-
|
| 473 |
-
# Move annotation to the bottom and away from the line
|
| 474 |
-
ax.annotate(f'Threshold: {anomaly_threshold:.1f}',
|
| 475 |
-
xy=(threshold, ax.get_ylim()[0]),
|
| 476 |
-
xytext=(0, -20),
|
| 477 |
-
textcoords='offset points',
|
| 478 |
-
ha='center', va='top',
|
| 479 |
-
bbox=dict(boxstyle='round,pad=0.5', fc='white', ec='none', alpha=0.7),
|
| 480 |
-
color='red')
|
| 481 |
-
|
| 482 |
-
plt.tight_layout()
|
| 483 |
-
plt.close()
|
| 484 |
-
return fig
|
| 485 |
-
|
| 486 |
-
|
| 487 |
-
def plot_posture(df, posture_scores, color='blue', anomaly_threshold=4):
|
| 488 |
-
plt.figure(figsize=(16, 8), dpi=400)
|
| 489 |
-
fig, ax = plt.subplots(figsize=(16, 8))
|
| 490 |
-
|
| 491 |
-
df['Seconds'] = df['Timecode'].apply(
|
| 492 |
-
lambda x: sum(float(t) * 60 ** i for i, t in enumerate(reversed(x.split(':')))))
|
| 493 |
-
|
| 494 |
-
posture_data = [(frame, score) for frame, score in posture_scores.items() if score is not None]
|
| 495 |
-
posture_frames, posture_scores = zip(*posture_data)
|
| 496 |
-
|
| 497 |
-
# Create a new dataframe for posture data
|
| 498 |
-
posture_df = pd.DataFrame({'Frame': posture_frames, 'Score': posture_scores})
|
| 499 |
-
posture_df = posture_df.merge(df[['Frame', 'Seconds']], on='Frame', how='inner')
|
| 500 |
-
|
| 501 |
-
ax.scatter(posture_df['Seconds'], posture_df['Score'], color=color, alpha=0.3, s=5)
|
| 502 |
-
mean = posture_df['Score'].rolling(window=10).mean()
|
| 503 |
-
ax.plot(posture_df['Seconds'], mean, color=color, linewidth=0.5)
|
| 504 |
-
|
| 505 |
-
ax.set_xlabel('Timecode')
|
| 506 |
-
ax.set_ylabel('Posture Score')
|
| 507 |
-
ax.set_title("Body Posture Over Time")
|
| 508 |
-
|
| 509 |
-
ax.grid(True, linestyle='--', alpha=0.7)
|
| 510 |
-
|
| 511 |
-
max_seconds = df['Seconds'].max()
|
| 512 |
-
num_ticks = 80
|
| 513 |
-
tick_locations = np.linspace(0, max_seconds, num_ticks)
|
| 514 |
-
tick_labels = [seconds_to_timecode(int(s)) for s in tick_locations]
|
| 515 |
-
|
| 516 |
-
ax.set_xticks(tick_locations)
|
| 517 |
-
ax.set_xticklabels(tick_labels, rotation=90, ha='center', fontsize=6)
|
| 518 |
-
|
| 519 |
-
plt.tight_layout()
|
| 520 |
-
plt.close()
|
| 521 |
-
return fig
|
| 522 |
-
|
| 523 |
-
|
| 524 |
-
def plot_mse_heatmap(mse_values, title, df):
|
| 525 |
-
plt.figure(figsize=(20, 5), dpi=400)
|
| 526 |
-
fig, ax = plt.subplots(figsize=(20, 5))
|
| 527 |
-
|
| 528 |
-
# Reshape MSE values to 2D array for heatmap
|
| 529 |
-
mse_2d = mse_values.reshape(1, -1)
|
| 530 |
-
|
| 531 |
-
# Create heatmap
|
| 532 |
-
sns.heatmap(mse_2d, cmap='YlOrRd', cbar_kws={'label': 'MSE'}, ax=ax)
|
| 533 |
-
|
| 534 |
-
# Set x-axis ticks to timecodes
|
| 535 |
-
num_ticks = 60
|
| 536 |
-
tick_locations = np.linspace(0, len(mse_values) - 1, num_ticks).astype(int)
|
| 537 |
-
tick_labels = [df['Timecode'].iloc[i] for i in tick_locations]
|
| 538 |
-
|
| 539 |
-
ax.set_xticks(tick_locations)
|
| 540 |
-
ax.set_xticklabels(tick_labels, rotation=90, ha='center', va='top') # Adjusted rotation and alignment
|
| 541 |
-
|
| 542 |
-
ax.set_title(title)
|
| 543 |
-
|
| 544 |
-
# Remove y-axis labels
|
| 545 |
-
ax.set_yticks([])
|
| 546 |
-
|
| 547 |
-
plt.tight_layout() # Ensure all elements fit within the figure
|
| 548 |
-
plt.close()
|
| 549 |
-
return fig
|
| 550 |
-
|
| 551 |
-
def draw_pose_landmarks(frame, landmarks):
|
| 552 |
-
annotated_frame = frame.copy()
|
| 553 |
-
# Include relevant landmarks for head position and body
|
| 554 |
-
body_landmarks = [
|
| 555 |
-
mp_pose.PoseLandmark.NOSE,
|
| 556 |
-
mp_pose.PoseLandmark.LEFT_SHOULDER,
|
| 557 |
-
mp_pose.PoseLandmark.RIGHT_SHOULDER,
|
| 558 |
-
mp_pose.PoseLandmark.LEFT_EAR,
|
| 559 |
-
mp_pose.PoseLandmark.RIGHT_EAR,
|
| 560 |
-
mp_pose.PoseLandmark.LEFT_ELBOW,
|
| 561 |
-
mp_pose.PoseLandmark.RIGHT_ELBOW,
|
| 562 |
-
mp_pose.PoseLandmark.LEFT_WRIST,
|
| 563 |
-
mp_pose.PoseLandmark.RIGHT_WRIST,
|
| 564 |
-
mp_pose.PoseLandmark.LEFT_HIP,
|
| 565 |
-
mp_pose.PoseLandmark.RIGHT_HIP,
|
| 566 |
-
mp_pose.PoseLandmark.LEFT_KNEE,
|
| 567 |
-
mp_pose.PoseLandmark.RIGHT_KNEE,
|
| 568 |
-
mp_pose.PoseLandmark.LEFT_ANKLE,
|
| 569 |
-
mp_pose.PoseLandmark.RIGHT_ANKLE
|
| 570 |
-
]
|
| 571 |
-
|
| 572 |
-
# Connections for head position and body
|
| 573 |
-
body_connections = [
|
| 574 |
-
(mp_pose.PoseLandmark.LEFT_EAR, mp_pose.PoseLandmark.LEFT_SHOULDER),
|
| 575 |
-
(mp_pose.PoseLandmark.RIGHT_EAR, mp_pose.PoseLandmark.RIGHT_SHOULDER),
|
| 576 |
-
(mp_pose.PoseLandmark.NOSE, mp_pose.PoseLandmark.LEFT_SHOULDER),
|
| 577 |
-
(mp_pose.PoseLandmark.NOSE, mp_pose.PoseLandmark.RIGHT_SHOULDER),
|
| 578 |
-
(mp_pose.PoseLandmark.LEFT_SHOULDER, mp_pose.PoseLandmark.RIGHT_SHOULDER),
|
| 579 |
-
(mp_pose.PoseLandmark.LEFT_SHOULDER, mp_pose.PoseLandmark.LEFT_ELBOW),
|
| 580 |
-
(mp_pose.PoseLandmark.RIGHT_SHOULDER, mp_pose.PoseLandmark.RIGHT_ELBOW),
|
| 581 |
-
(mp_pose.PoseLandmark.LEFT_ELBOW, mp_pose.PoseLandmark.LEFT_WRIST),
|
| 582 |
-
(mp_pose.PoseLandmark.RIGHT_ELBOW, mp_pose.PoseLandmark.RIGHT_WRIST),
|
| 583 |
-
(mp_pose.PoseLandmark.LEFT_SHOULDER, mp_pose.PoseLandmark.LEFT_HIP),
|
| 584 |
-
(mp_pose.PoseLandmark.RIGHT_SHOULDER, mp_pose.PoseLandmark.RIGHT_HIP),
|
| 585 |
-
(mp_pose.PoseLandmark.LEFT_HIP, mp_pose.PoseLandmark.RIGHT_HIP),
|
| 586 |
-
(mp_pose.PoseLandmark.LEFT_HIP, mp_pose.PoseLandmark.LEFT_KNEE),
|
| 587 |
-
(mp_pose.PoseLandmark.RIGHT_HIP, mp_pose.PoseLandmark.RIGHT_KNEE),
|
| 588 |
-
(mp_pose.PoseLandmark.LEFT_KNEE, mp_pose.PoseLandmark.LEFT_ANKLE),
|
| 589 |
-
(mp_pose.PoseLandmark.RIGHT_KNEE, mp_pose.PoseLandmark.RIGHT_ANKLE)
|
| 590 |
-
]
|
| 591 |
-
|
| 592 |
-
# Draw landmarks
|
| 593 |
-
for landmark in body_landmarks:
|
| 594 |
-
if landmark in landmarks.landmark:
|
| 595 |
-
lm = landmarks.landmark[landmark]
|
| 596 |
-
h, w, _ = annotated_frame.shape
|
| 597 |
-
cx, cy = int(lm.x * w), int(lm.y * h)
|
| 598 |
-
cv2.circle(annotated_frame, (cx, cy), 5, (245, 117, 66), -1)
|
| 599 |
-
|
| 600 |
-
# Draw connections
|
| 601 |
-
for connection in body_connections:
|
| 602 |
-
start_lm = landmarks.landmark[connection[0]]
|
| 603 |
-
end_lm = landmarks.landmark[connection[1]]
|
| 604 |
-
h, w, _ = annotated_frame.shape
|
| 605 |
-
start_point = (int(start_lm.x * w), int(start_lm.y * h))
|
| 606 |
-
end_point = (int(end_lm.x * w), int(end_lm.y * h))
|
| 607 |
-
cv2.line(annotated_frame, start_point, end_point, (245, 66, 230), 2)
|
| 608 |
-
|
| 609 |
-
# Highlight head tilt
|
| 610 |
-
left_ear = landmarks.landmark[mp_pose.PoseLandmark.LEFT_EAR]
|
| 611 |
-
right_ear = landmarks.landmark[mp_pose.PoseLandmark.RIGHT_EAR]
|
| 612 |
-
nose = landmarks.landmark[mp_pose.PoseLandmark.NOSE]
|
| 613 |
-
|
| 614 |
-
h, w, _ = annotated_frame.shape
|
| 615 |
-
left_ear_point = (int(left_ear.x * w), int(left_ear.y * h))
|
| 616 |
-
right_ear_point = (int(right_ear.x * w), int(right_ear.y * h))
|
| 617 |
-
nose_point = (int(nose.x * w), int(nose.y * h))
|
| 618 |
-
|
| 619 |
-
# Draw a line between ears to show head tilt
|
| 620 |
-
cv2.line(annotated_frame, left_ear_point, right_ear_point, (0, 255, 0), 2)
|
| 621 |
-
|
| 622 |
-
# Draw a line from nose to the midpoint between shoulders to show head forward/backward tilt
|
| 623 |
-
left_shoulder = landmarks.landmark[mp_pose.PoseLandmark.LEFT_SHOULDER]
|
| 624 |
-
right_shoulder = landmarks.landmark[mp_pose.PoseLandmark.RIGHT_SHOULDER]
|
| 625 |
-
shoulder_mid_x = (left_shoulder.x + right_shoulder.x) / 2
|
| 626 |
-
shoulder_mid_y = (left_shoulder.y + right_shoulder.y) / 2
|
| 627 |
-
shoulder_mid_point = (int(shoulder_mid_x * w), int(shoulder_mid_y * h))
|
| 628 |
-
cv2.line(annotated_frame, nose_point, shoulder_mid_point, (0, 255, 0), 2)
|
| 629 |
-
|
| 630 |
-
return annotated_frame
|
| 631 |
-
|
| 632 |
-
def get_all_face_samples(organized_faces_folder, output_folder, largest_cluster, max_samples=500):
|
| 633 |
-
face_samples = {"most_frequent": [], "others": []}
|
| 634 |
-
for cluster_folder in sorted(os.listdir(organized_faces_folder)):
|
| 635 |
-
if cluster_folder.startswith("person_"):
|
| 636 |
-
person_folder = os.path.join(organized_faces_folder, cluster_folder)
|
| 637 |
-
face_files = sorted([f for f in os.listdir(person_folder) if f.endswith('.jpg')])
|
| 638 |
-
if face_files:
|
| 639 |
-
cluster_id = int(cluster_folder.split('_')[1])
|
| 640 |
-
if cluster_id == largest_cluster:
|
| 641 |
-
for i, sample in enumerate(face_files[:max_samples]):
|
| 642 |
-
face_path = os.path.join(person_folder, sample)
|
| 643 |
-
output_path = os.path.join(output_folder, f"face_sample_most_frequent_{i:04d}.jpg")
|
| 644 |
-
face_img = cv2.imread(face_path)
|
| 645 |
-
if face_img is not None:
|
| 646 |
-
small_face = cv2.resize(face_img, (160, 160))
|
| 647 |
-
cv2.imwrite(output_path, small_face)
|
| 648 |
-
face_samples["most_frequent"].append(output_path)
|
| 649 |
-
if len(face_samples["most_frequent"]) >= max_samples:
|
| 650 |
-
break
|
| 651 |
-
else:
|
| 652 |
-
remaining_samples = max_samples - len(face_samples["others"])
|
| 653 |
-
if remaining_samples > 0:
|
| 654 |
-
for i, sample in enumerate(face_files[:remaining_samples]):
|
| 655 |
-
face_path = os.path.join(person_folder, sample)
|
| 656 |
-
output_path = os.path.join(output_folder, f"face_sample_other_{cluster_id:02d}_{i:04d}.jpg")
|
| 657 |
-
face_img = cv2.imread(face_path)
|
| 658 |
-
if face_img is not None:
|
| 659 |
-
small_face = cv2.resize(face_img, (160, 160))
|
| 660 |
-
cv2.imwrite(output_path, small_face)
|
| 661 |
-
face_samples["others"].append(output_path)
|
| 662 |
-
if len(face_samples["others"]) >= max_samples:
|
| 663 |
-
break
|
| 664 |
-
return face_samples
|
| 665 |
-
|
| 666 |
-
|
| 667 |
-
def process_video(video_path, anomaly_threshold, desired_fps, progress=gr.Progress()):
|
| 668 |
-
start_time = time.time()
|
| 669 |
-
output_folder = "output"
|
| 670 |
-
os.makedirs(output_folder, exist_ok=True)
|
| 671 |
-
batch_size = 16
|
| 672 |
-
|
| 673 |
-
GRAPH_COLORS = {
|
| 674 |
-
'facial_embeddings': 'navy',
|
| 675 |
-
'body_posture': 'purple'
|
| 676 |
-
}
|
| 677 |
-
|
| 678 |
-
with tempfile.TemporaryDirectory() as temp_dir:
|
| 679 |
-
aligned_faces_folder = os.path.join(temp_dir, 'aligned_faces')
|
| 680 |
-
organized_faces_folder = os.path.join(temp_dir, 'organized_faces')
|
| 681 |
-
os.makedirs(aligned_faces_folder, exist_ok=True)
|
| 682 |
-
os.makedirs(organized_faces_folder, exist_ok=True)
|
| 683 |
-
|
| 684 |
-
clip = VideoFileClip(video_path)
|
| 685 |
-
video_duration = clip.duration
|
| 686 |
-
clip.close()
|
| 687 |
-
|
| 688 |
-
progress(0, "Starting frame extraction")
|
| 689 |
-
frames_folder = os.path.join(temp_dir, 'extracted_frames')
|
| 690 |
-
|
| 691 |
-
def extraction_progress(percent, message):
|
| 692 |
-
progress(percent / 100, f"Extracting frames")
|
| 693 |
-
|
| 694 |
-
frame_count, original_fps = extract_frames(video_path, frames_folder, desired_fps, extraction_progress)
|
| 695 |
-
|
| 696 |
-
progress(1, "Frame extraction complete")
|
| 697 |
-
progress(0.3, "Processing frames")
|
| 698 |
-
embeddings_by_frame, posture_scores_by_frame, posture_landmarks_by_frame, aligned_face_paths = process_frames(
|
| 699 |
-
frames_folder, aligned_faces_folder,
|
| 700 |
-
frame_count,
|
| 701 |
-
progress, batch_size)
|
| 702 |
-
|
| 703 |
-
if not aligned_face_paths:
|
| 704 |
-
raise ValueError("No faces were extracted from the video.")
|
| 705 |
-
|
| 706 |
-
progress(0.6, "Clustering faces")
|
| 707 |
-
embeddings = [embedding for _, embedding in embeddings_by_frame.items()]
|
| 708 |
-
clusters = cluster_faces(embeddings)
|
| 709 |
-
num_clusters = len(set(clusters))
|
| 710 |
-
|
| 711 |
-
progress(0.7, "Organizing faces")
|
| 712 |
-
organize_faces_by_person(embeddings_by_frame, clusters, aligned_faces_folder, organized_faces_folder)
|
| 713 |
-
|
| 714 |
-
progress(0.8, "Saving person data")
|
| 715 |
-
df, largest_cluster = save_person_data_to_csv(embeddings_by_frame, clusters, desired_fps,
|
| 716 |
-
original_fps, temp_dir, video_duration)
|
| 717 |
-
|
| 718 |
-
# Add 'Seconds' column to df
|
| 719 |
-
df['Seconds'] = df['Timecode'].apply(
|
| 720 |
-
lambda x: sum(float(t) * 60 ** i for i, t in enumerate(reversed(x.split(':')))))
|
| 721 |
-
|
| 722 |
-
progress(0.85, "Getting face samples")
|
| 723 |
-
face_samples = get_all_face_samples(organized_faces_folder, output_folder, largest_cluster)
|
| 724 |
-
|
| 725 |
-
progress(0.9, "Performing anomaly detection")
|
| 726 |
-
embedding_columns = [col for col in df.columns if col.startswith('Raw_Embedding_')]
|
| 727 |
-
|
| 728 |
-
X_embeddings = df[embedding_columns].values
|
| 729 |
-
|
| 730 |
-
try:
|
| 731 |
-
X_posture = np.array([posture_scores_by_frame.get(frame, None) for frame in df['Frame']])
|
| 732 |
-
X_posture = X_posture[X_posture != None].reshape(-1, 1) # Remove None values and reshape
|
| 733 |
-
|
| 734 |
-
# Ensure X_posture is not empty
|
| 735 |
-
if len(X_posture) == 0:
|
| 736 |
-
raise ValueError("No valid posture data found")
|
| 737 |
-
|
| 738 |
-
mse_embeddings, mse_posture = anomaly_detection(X_embeddings, X_posture, batch_size=batch_size)
|
| 739 |
-
|
| 740 |
-
progress(0.95, "Generating plots")
|
| 741 |
-
mse_plot_embeddings, anomaly_frames_embeddings = plot_mse(df, mse_embeddings, "Facial Features",
|
| 742 |
-
color=GRAPH_COLORS['facial_embeddings'],
|
| 743 |
-
anomaly_threshold=anomaly_threshold)
|
| 744 |
-
|
| 745 |
-
mse_histogram_embeddings = plot_mse_histogram(mse_embeddings, "MSE Distribution: Facial Features",
|
| 746 |
-
anomaly_threshold, color=GRAPH_COLORS['facial_embeddings'])
|
| 747 |
-
|
| 748 |
-
mse_plot_posture, anomaly_frames_posture = plot_mse(df, mse_posture, "Body Posture",
|
| 749 |
-
color=GRAPH_COLORS['body_posture'],
|
| 750 |
-
anomaly_threshold=anomaly_threshold)
|
| 751 |
-
|
| 752 |
-
mse_histogram_posture = plot_mse_histogram(mse_posture, "MSE Distribution: Body Posture",
|
| 753 |
-
anomaly_threshold, color=GRAPH_COLORS['body_posture'])
|
| 754 |
-
|
| 755 |
-
mse_heatmap_embeddings = plot_mse_heatmap(mse_embeddings, "Facial Features MSE Heatmap", df)
|
| 756 |
-
mse_heatmap_posture = plot_mse_heatmap(mse_posture, "Body Posture MSE Heatmap", df)
|
| 757 |
-
|
| 758 |
-
except Exception as e:
|
| 759 |
-
print(f"Error details: {str(e)}")
|
| 760 |
-
import traceback
|
| 761 |
-
traceback.print_exc()
|
| 762 |
-
return (f"Error in video processing: {str(e)}",) + (None,) * 14
|
| 763 |
-
|
| 764 |
-
progress(1.0, "Preparing results")
|
| 765 |
-
results = f"Number of persons detected: {num_clusters}\n\n"
|
| 766 |
-
results += "Breakdown:\n"
|
| 767 |
-
for cluster_id in range(num_clusters):
|
| 768 |
-
face_count = len([c for c in clusters if c == cluster_id])
|
| 769 |
-
results += f"Person {cluster_id + 1}: {face_count} face frames\n"
|
| 770 |
-
|
| 771 |
-
end_time = time.time()
|
| 772 |
-
execution_time = end_time - start_time
|
| 773 |
-
|
| 774 |
-
def add_timecode_to_image(image, timecode):
|
| 775 |
-
img_pil = Image.fromarray(image)
|
| 776 |
-
draw = ImageDraw.Draw(img_pil)
|
| 777 |
-
font = ImageFont.truetype("arial.ttf", 15)
|
| 778 |
-
draw.text((10, 10), timecode, (255, 0, 0), font=font)
|
| 779 |
-
return np.array(img_pil)
|
| 780 |
-
|
| 781 |
-
# In the process_video function, update the anomaly frame processing:
|
| 782 |
-
anomaly_faces_embeddings = []
|
| 783 |
-
for frame in anomaly_frames_embeddings:
|
| 784 |
-
face_path = os.path.join(aligned_faces_folder, f"frame_{frame}_face.jpg")
|
| 785 |
-
if os.path.exists(face_path):
|
| 786 |
-
face_img = cv2.imread(face_path)
|
| 787 |
-
if face_img is not None:
|
| 788 |
-
face_img = cv2.cvtColor(face_img, cv2.COLOR_BGR2RGB)
|
| 789 |
-
timecode = df[df['Frame'] == frame]['Timecode'].iloc[0]
|
| 790 |
-
face_img_with_timecode = add_timecode_to_image(face_img, timecode)
|
| 791 |
-
anomaly_faces_embeddings.append(face_img_with_timecode)
|
| 792 |
-
|
| 793 |
-
anomaly_frames_posture_images = []
|
| 794 |
-
for frame in anomaly_frames_posture:
|
| 795 |
-
frame_path = os.path.join(frames_folder, f"frame_{frame:04d}.jpg")
|
| 796 |
-
if os.path.exists(frame_path):
|
| 797 |
-
frame_img = cv2.imread(frame_path)
|
| 798 |
-
if frame_img is not None:
|
| 799 |
-
frame_img = cv2.cvtColor(frame_img, cv2.COLOR_BGR2RGB)
|
| 800 |
-
pose_results = pose.process(frame_img)
|
| 801 |
-
if pose_results.pose_landmarks:
|
| 802 |
-
frame_img = draw_pose_landmarks(frame_img, pose_results.pose_landmarks)
|
| 803 |
-
timecode = df[df['Frame'] == frame]['Timecode'].iloc[0]
|
| 804 |
-
frame_img_with_timecode = add_timecode_to_image(frame_img, timecode)
|
| 805 |
-
anomaly_frames_posture_images.append(frame_img_with_timecode)
|
| 806 |
-
|
| 807 |
-
return (
|
| 808 |
-
execution_time,
|
| 809 |
-
results,
|
| 810 |
-
df,
|
| 811 |
-
mse_embeddings,
|
| 812 |
-
mse_posture,
|
| 813 |
-
mse_plot_embeddings,
|
| 814 |
-
mse_histogram_embeddings,
|
| 815 |
-
mse_plot_posture,
|
| 816 |
-
mse_histogram_posture,
|
| 817 |
-
mse_heatmap_embeddings,
|
| 818 |
-
mse_heatmap_posture,
|
| 819 |
-
face_samples["most_frequent"],
|
| 820 |
-
face_samples["others"],
|
| 821 |
-
anomaly_faces_embeddings,
|
| 822 |
-
anomaly_frames_posture_images,
|
| 823 |
-
aligned_faces_folder,
|
| 824 |
-
frames_folder
|
| 825 |
-
)
|
| 826 |
-
|
| 827 |
-
|
| 828 |
-
with gr.Blocks() as iface:
|
| 829 |
-
gr.Markdown("""
|
| 830 |
-
# Facial Expression and Body Language Anomaly Detection
|
| 831 |
-
|
| 832 |
-
This application analyzes videos to detect anomalies in facial features and body language.
|
| 833 |
-
It processes the video frames to extract facial embeddings and body posture,
|
| 834 |
-
then uses machine learning techniques to identify unusual patterns or deviations from the norm.
|
| 835 |
-
|
| 836 |
-
For more information, visit: [https://github.com/reab5555/Facial-Expression-Anomaly-Detection](https://github.com/reab5555/Facial-Expression-Anomaly-Detection)
|
| 837 |
-
""")
|
| 838 |
-
|
| 839 |
-
with gr.Row():
|
| 840 |
-
video_input = gr.Video()
|
| 841 |
-
|
| 842 |
-
anomaly_threshold = gr.Slider(minimum=1, maximum=5, step=0.1, value=3, label="Anomaly Detection Threshold")
|
| 843 |
-
process_btn = gr.Button("Process Video")
|
| 844 |
-
progress_bar = gr.Progress()
|
| 845 |
-
execution_time = gr.Number(label="Execution Time (seconds)")
|
| 846 |
-
|
| 847 |
-
with gr.Group(visible=False) as results_group:
|
| 848 |
-
results_text = gr.TextArea(label="Anomaly Detection Results", lines=4)
|
| 849 |
-
|
| 850 |
-
with gr.Tab("Facial Features"):
|
| 851 |
-
mse_features_plot = gr.Plot(label="MSE: Facial Features")
|
| 852 |
-
mse_features_hist = gr.Plot(label="MSE Distribution: Facial Features")
|
| 853 |
-
mse_features_heatmap = gr.Plot(label="MSE Heatmap: Facial Features")
|
| 854 |
-
anomaly_frames_features = gr.Gallery(label="Anomaly Frames (Facial Features)", columns=6, rows=2, height="auto")
|
| 855 |
-
|
| 856 |
-
with gr.Tab("Body Posture"):
|
| 857 |
-
mse_posture_plot = gr.Plot(label="MSE: Body Posture")
|
| 858 |
-
mse_posture_hist = gr.Plot(label="MSE Distribution: Body Posture")
|
| 859 |
-
mse_posture_heatmap = gr.Plot(label="MSE Heatmap: Body Posture")
|
| 860 |
-
anomaly_frames_posture = gr.Gallery(label="Anomaly Frames (Body Posture)", columns=6, rows=2, height="auto")
|
| 861 |
-
|
| 862 |
-
with gr.Tab("Face Samples"):
|
| 863 |
-
face_samples_most_frequent = gr.Gallery(label="Most Frequent Person Samples (Target)", columns=6, rows=2, height="auto")
|
| 864 |
-
face_samples_others = gr.Gallery(label="Other Persons Samples", columns=6, rows=1, height="auto")
|
| 865 |
-
|
| 866 |
-
# Hidden components to store intermediate results
|
| 867 |
-
df_store = gr.State()
|
| 868 |
-
mse_features_store = gr.State()
|
| 869 |
-
mse_posture_store = gr.State()
|
| 870 |
-
aligned_faces_folder_store = gr.State()
|
| 871 |
-
frames_folder_store = gr.State()
|
| 872 |
-
mse_heatmap_embeddings_store = gr.State()
|
| 873 |
-
mse_heatmap_posture_store = gr.State()
|
| 874 |
-
|
| 875 |
-
def process_and_show_completion(video_input_path, anomaly_threshold_input):
|
| 876 |
-
try:
|
| 877 |
-
print("Starting video processing...")
|
| 878 |
-
results = process_video(video_input_path, anomaly_threshold_input, FIXED_FPS, progress=progress_bar)
|
| 879 |
-
print("Video processing completed.")
|
| 880 |
-
|
| 881 |
-
if isinstance(results[0], str) and results[0].startswith("Error"):
|
| 882 |
-
print(f"Error occurred: {results[0]}")
|
| 883 |
-
return [results[0]] + [None] * 18 # Update this line to match the number of outputs
|
| 884 |
-
|
| 885 |
-
exec_time, results_summary, df, mse_embeddings, mse_posture, \
|
| 886 |
-
mse_plot_embeddings, mse_histogram_embeddings, \
|
| 887 |
-
mse_plot_posture, mse_histogram_posture, \
|
| 888 |
-
mse_heatmap_embeddings, mse_heatmap_posture, \
|
| 889 |
-
face_samples_frequent, face_samples_other, \
|
| 890 |
-
anomaly_faces_embeddings, anomaly_frames_posture_images, \
|
| 891 |
-
aligned_faces_folder, frames_folder = results
|
| 892 |
-
|
| 893 |
-
# Convert numpy arrays to PIL Images for the galleries
|
| 894 |
-
anomaly_faces_embeddings_pil = [Image.fromarray(face) for face in anomaly_faces_embeddings]
|
| 895 |
-
anomaly_frames_posture_pil = [Image.fromarray(frame) for frame in anomaly_frames_posture_images]
|
| 896 |
-
|
| 897 |
-
# Ensure face samples are in the correct format for Gradio
|
| 898 |
-
face_samples_frequent = [Image.open(path) for path in face_samples_frequent]
|
| 899 |
-
face_samples_other = [Image.open(path) for path in face_samples_other]
|
| 900 |
-
|
| 901 |
-
output = [
|
| 902 |
-
exec_time, results_summary,
|
| 903 |
-
df, mse_embeddings, mse_posture,
|
| 904 |
-
mse_plot_embeddings, mse_plot_posture,
|
| 905 |
-
mse_histogram_embeddings, mse_histogram_posture,
|
| 906 |
-
mse_heatmap_embeddings, mse_heatmap_posture,
|
| 907 |
-
anomaly_faces_embeddings_pil, anomaly_frames_posture_pil,
|
| 908 |
-
face_samples_frequent, face_samples_other,
|
| 909 |
-
aligned_faces_folder, frames_folder,
|
| 910 |
-
mse_embeddings, mse_posture
|
| 911 |
-
]
|
| 912 |
-
|
| 913 |
-
return output
|
| 914 |
-
|
| 915 |
-
except Exception as e:
|
| 916 |
-
error_message = f"An error occurred: {str(e)}"
|
| 917 |
-
print(error_message)
|
| 918 |
-
import traceback
|
| 919 |
-
traceback.print_exc()
|
| 920 |
-
return [error_message] + [None] * 18
|
| 921 |
-
|
| 922 |
-
process_btn.click(
|
| 923 |
-
process_and_show_completion,
|
| 924 |
-
inputs=[video_input, anomaly_threshold],
|
| 925 |
-
outputs=[
|
| 926 |
-
execution_time, results_text, df_store,
|
| 927 |
-
mse_features_store, mse_posture_store,
|
| 928 |
-
mse_features_plot, mse_posture_plot,
|
| 929 |
-
mse_features_hist, mse_posture_hist,
|
| 930 |
-
mse_features_heatmap, mse_posture_heatmap,
|
| 931 |
-
anomaly_frames_features, anomaly_frames_posture,
|
| 932 |
-
face_samples_most_frequent, face_samples_others,
|
| 933 |
-
aligned_faces_folder_store, frames_folder_store,
|
| 934 |
-
mse_heatmap_embeddings_store, mse_heatmap_posture_store
|
| 935 |
-
]
|
| 936 |
-
).then(
|
| 937 |
-
lambda: gr.Group(visible=True),
|
| 938 |
-
inputs=None,
|
| 939 |
-
outputs=[results_group]
|
| 940 |
-
)
|
| 941 |
-
|
| 942 |
-
if __name__ == "__main__":
|
| 943 |
-
iface.launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|