reab5555 commited on
Commit
5286b18
·
verified ·
1 Parent(s): 0255b8c

Upload 8 files

Browse files
Files changed (8) hide show
  1. anomaly_detection.py +88 -0
  2. face_analysis.py +40 -0
  3. main.py +152 -0
  4. pose_analysis.py +135 -0
  5. transcribe.py +84 -0
  6. utils.py +94 -0
  7. video_processing.py +347 -0
  8. visualization.py +177 -0
anomaly_detection.py ADDED
@@ -0,0 +1,88 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ import torch.nn as nn
3
+ import torch.optim as optim
4
+ import numpy as np
5
+ from sklearn.preprocessing import MinMaxScaler
6
+
7
+
8
+ class Autoencoder(nn.Module):
9
+ def __init__(self, input_size):
10
+ super(Autoencoder, self).__init__()
11
+ self.encoder = nn.Sequential(
12
+ nn.Linear(input_size, 256),
13
+ nn.ReLU(),
14
+ nn.Linear(256, 128),
15
+ nn.ReLU(),
16
+ nn.Linear(128, 64),
17
+ nn.ReLU(),
18
+ nn.Linear(64, 32)
19
+ )
20
+ self.decoder = nn.Sequential(
21
+ nn.Linear(32, 64),
22
+ nn.ReLU(),
23
+ nn.Linear(64, 128),
24
+ nn.ReLU(),
25
+ nn.Linear(128, 256),
26
+ nn.ReLU(),
27
+ nn.Linear(256, input_size)
28
+ )
29
+
30
+ def forward(self, x):
31
+ batch_size, seq_len, _ = x.size()
32
+ x = x.view(batch_size * seq_len, -1)
33
+ encoded = self.encoder(x)
34
+ decoded = self.decoder(encoded)
35
+ return decoded.view(batch_size, seq_len, -1)
36
+
37
+ def anomaly_detection(X_embeddings, X_posture, epochs=200, patience=5):
38
+ device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
39
+
40
+ # Normalize posture
41
+ scaler_posture = MinMaxScaler()
42
+ X_posture_scaled = scaler_posture.fit_transform(X_posture.reshape(-1, 1))
43
+
44
+ # Process facial embeddings
45
+ X_embeddings = torch.FloatTensor(X_embeddings).to(device)
46
+ if X_embeddings.dim() == 2:
47
+ X_embeddings = X_embeddings.unsqueeze(0)
48
+
49
+ # Process posture
50
+ X_posture_scaled = torch.FloatTensor(X_posture_scaled).to(device)
51
+ if X_posture_scaled.dim() == 2:
52
+ X_posture_scaled = X_posture_scaled.unsqueeze(0)
53
+
54
+ model_embeddings = Autoencoder(input_size=X_embeddings.shape[2]).to(device)
55
+ model_posture = Autoencoder(input_size=X_posture_scaled.shape[2]).to(device)
56
+
57
+ criterion = nn.MSELoss()
58
+ optimizer_embeddings = optim.Adam(model_embeddings.parameters())
59
+ optimizer_posture = optim.Adam(model_posture.parameters())
60
+
61
+ # Train models
62
+ for epoch in range(epochs):
63
+ for model, optimizer, X in [(model_embeddings, optimizer_embeddings, X_embeddings),
64
+ (model_posture, optimizer_posture, X_posture_scaled)]:
65
+ model.train()
66
+ optimizer.zero_grad()
67
+ output = model(X)
68
+ loss = criterion(output, X)
69
+ loss.backward()
70
+ optimizer.step()
71
+
72
+ # Compute MSE for embeddings and posture
73
+ model_embeddings.eval()
74
+ model_posture.eval()
75
+ with torch.no_grad():
76
+ reconstructed_embeddings = model_embeddings(X_embeddings).cpu().numpy()
77
+ reconstructed_posture = model_posture(X_posture_scaled).cpu().numpy()
78
+
79
+ mse_embeddings = np.mean(np.power(X_embeddings.cpu().numpy() - reconstructed_embeddings, 2), axis=2).squeeze()
80
+ mse_posture = np.mean(np.power(X_posture_scaled.cpu().numpy() - reconstructed_posture, 2), axis=2).squeeze()
81
+
82
+ return mse_embeddings, mse_posture
83
+
84
+ def determine_anomalies(mse_values, threshold):
85
+ mean = np.mean(mse_values)
86
+ std = np.std(mse_values)
87
+ anomalies = mse_values > (mean + threshold * std)
88
+ return anomalies
face_analysis.py ADDED
@@ -0,0 +1,40 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ import numpy as np
3
+ from facenet_pytorch import InceptionResnetV1
4
+ from sklearn.cluster import DBSCAN
5
+ import os
6
+ import shutil
7
+
8
+ device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
9
+ model = InceptionResnetV1(pretrained='vggface2').eval().to(device)
10
+
11
+ def get_face_embedding(face_img):
12
+ face_tensor = torch.tensor(face_img).permute(2, 0, 1).unsqueeze(0).float() / 255
13
+ face_tensor = (face_tensor - 0.5) / 0.5
14
+ face_tensor = face_tensor.to(device)
15
+ with torch.no_grad():
16
+ embedding = model(face_tensor)
17
+ return embedding.cpu().numpy().flatten()
18
+
19
+ def cluster_faces(embeddings):
20
+ if len(embeddings) < 2:
21
+ print("Not enough faces for clustering. Assigning all to one cluster.")
22
+ return np.zeros(len(embeddings), dtype=int)
23
+
24
+ X = np.stack(embeddings)
25
+ dbscan = DBSCAN(eps=0.5, min_samples=5, metric='cosine')
26
+ clusters = dbscan.fit_predict(X)
27
+
28
+ if np.all(clusters == -1):
29
+ print("DBSCAN assigned all to noise. Considering as one cluster.")
30
+ return np.zeros(len(embeddings), dtype=int)
31
+
32
+ return clusters
33
+
34
+ def organize_faces_by_person(embeddings_by_frame, clusters, aligned_faces_folder, organized_faces_folder):
35
+ for (frame_num, embedding), cluster in zip(embeddings_by_frame.items(), clusters):
36
+ person_folder = os.path.join(organized_faces_folder, f"person_{cluster}")
37
+ os.makedirs(person_folder, exist_ok=True)
38
+ src = os.path.join(aligned_faces_folder, f"frame_{frame_num}_face.jpg")
39
+ dst = os.path.join(person_folder, f"frame_{frame_num}_face.jpg")
40
+ shutil.copy(src, dst)
main.py ADDED
@@ -0,0 +1,152 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ import time
3
+ from video_processing import process_video
4
+ from PIL import Image
5
+ import matplotlib
6
+ matplotlib.rcParams['figure.dpi'] = 500
7
+ matplotlib.rcParams['savefig.dpi'] = 500
8
+
9
+ def process_and_show_completion(video_input_path, anomaly_threshold_input, fps, progress=gr.Progress()):
10
+ try:
11
+ print("Starting video processing...")
12
+ results = process_video(video_input_path, anomaly_threshold_input, fps, progress=progress)
13
+ print("Video processing completed.")
14
+
15
+ if isinstance(results[0], str) and results[0].startswith("Error"):
16
+ print(f"Error occurred: {results[0]}")
17
+ return [results[0]] + [None] * 18
18
+
19
+ exec_time, results_summary, df, mse_embeddings, mse_posture, \
20
+ mse_plot_embeddings, mse_histogram_embeddings, \
21
+ mse_plot_posture, mse_histogram_posture, \
22
+ mse_heatmap_embeddings, mse_heatmap_posture, \
23
+ face_samples_frequent, face_samples_other, \
24
+ anomaly_faces_embeddings, anomaly_frames_posture_images, \
25
+ aligned_faces_folder, frames_folder, \
26
+ anomaly_sentences_features, anomaly_sentences_posture = results
27
+
28
+ anomaly_faces_embeddings_pil = [Image.fromarray(face) for face in anomaly_faces_embeddings]
29
+ anomaly_frames_posture_pil = [Image.fromarray(frame) for frame in anomaly_frames_posture_images]
30
+
31
+ face_samples_frequent = [Image.open(path) for path in face_samples_frequent]
32
+ face_samples_other = [Image.open(path) for path in face_samples_other]
33
+
34
+ anomaly_sentences_features, anomaly_sentences_posture = results[-2:]
35
+
36
+ # Format anomaly sentences output
37
+ sentences_features_output = format_anomaly_sentences(anomaly_sentences_features, "Facial Features")
38
+ sentences_posture_output = format_anomaly_sentences(anomaly_sentences_posture, "Body Posture")
39
+
40
+ output = [
41
+ exec_time, results_summary,
42
+ df, mse_embeddings, mse_posture,
43
+ mse_plot_embeddings, mse_plot_posture,
44
+ mse_histogram_embeddings, mse_histogram_posture,
45
+ mse_heatmap_embeddings, mse_heatmap_posture,
46
+ anomaly_faces_embeddings_pil, anomaly_frames_posture_pil,
47
+ face_samples_frequent, face_samples_other,
48
+ aligned_faces_folder, frames_folder,
49
+ mse_embeddings, mse_posture,
50
+ sentences_features_output, sentences_posture_output
51
+ ]
52
+
53
+ return output
54
+
55
+ except Exception as e:
56
+ error_message = f"An error occurred: {str(e)}"
57
+ print(error_message)
58
+ import traceback
59
+ traceback.print_exc()
60
+ return [error_message] + [None] * 20
61
+
62
+ with gr.Blocks() as iface:
63
+ gr.Markdown("""
64
+ # Facial Expression and Body Language Anomaly Detection
65
+
66
+ This application analyzes videos to detect anomalies in facial features and body language.
67
+ It processes the video frames to extract facial embeddings and body posture,
68
+ then uses machine learning techniques to identify unusual patterns or deviations from the norm.
69
+
70
+ For more information, visit: [https://github.com/reab5555/Facial-Expression-Anomaly-Detection](https://github.com/reab5555/Facial-Expression-Anomaly-Detection)
71
+ """)
72
+
73
+ with gr.Row():
74
+ video_input = gr.Video()
75
+
76
+ anomaly_threshold = gr.Slider(minimum=1, maximum=5, step=0.1, value=3, label="Anomaly Detection Threshold")
77
+ fps_slider = gr.Slider(minimum=5, maximum=20, step=1, value=10, label="Frames Per Second")
78
+ process_btn = gr.Button("Detect Anomalies")
79
+ progress_bar = gr.Progress()
80
+ execution_time = gr.Number(label="Execution Time (seconds)")
81
+
82
+ with gr.Group(visible=False) as results_group:
83
+ results_text = gr.TextArea(label="Anomaly Detection Results", lines=4)
84
+
85
+ with gr.Tab("Facial Features"):
86
+ mse_features_plot = gr.Plot(label="MSE: Facial Features")
87
+ mse_features_hist = gr.Plot(label="MSE Distribution: Facial Features")
88
+ mse_features_heatmap = gr.Plot(label="MSE Heatmap: Facial Features")
89
+ anomaly_frames_features = gr.Gallery(label="Anomaly Frames (Facial Features)", columns=6, rows=2, height="auto")
90
+
91
+ with gr.Tab("Body Posture"):
92
+ mse_posture_plot = gr.Plot(label="MSE: Body Posture")
93
+ mse_posture_hist = gr.Plot(label="MSE Distribution: Body Posture")
94
+ mse_posture_heatmap = gr.Plot(label="MSE Heatmap: Body Posture")
95
+ anomaly_frames_posture = gr.Gallery(label="Anomaly Frames (Body Posture)", columns=6, rows=2, height="auto")
96
+
97
+ with gr.Tab("Sentences"):
98
+ with gr.Row():
99
+ anomaly_sentences_features_output = gr.Textbox(label="Sentences before Facial Feature Anomalies",
100
+ lines=10)
101
+ anomaly_frames_features = gr.Gallery(label="Anomaly Frames (Facial Features)", columns=6, rows=2,
102
+ height="auto")
103
+
104
+ with gr.Row():
105
+ anomaly_sentences_posture_output = gr.Textbox(label="Sentences before Body Posture Anomalies", lines=10)
106
+ anomaly_frames_posture = gr.Gallery(label="Anomaly Frames (Body Posture)", columns=6, rows=2,
107
+ height="auto")
108
+
109
+ with gr.Tab("Face Samples"):
110
+ face_samples_most_frequent = gr.Gallery(label="Most Frequent Person Samples (Target)", columns=6, rows=2, height="auto")
111
+ face_samples_others = gr.Gallery(label="Other Persons Samples", columns=6, rows=1, height="auto")
112
+
113
+ df_store = gr.State()
114
+ mse_features_store = gr.State()
115
+ mse_posture_store = gr.State()
116
+ aligned_faces_folder_store = gr.State()
117
+ frames_folder_store = gr.State()
118
+ mse_heatmap_embeddings_store = gr.State()
119
+ mse_heatmap_posture_store = gr.State()
120
+
121
+ def format_anomaly_sentences(anomaly_sentences, anomaly_type):
122
+ output = f"Sentences before {anomaly_type} Anomalies:\n\n"
123
+ for anomaly_timecode, sentences in anomaly_sentences:
124
+ output += f"Anomaly at {anomaly_timecode}:\n"
125
+ for sentence_timecode, sentence in sentences:
126
+ output += f" [{sentence_timecode}] {sentence}\n"
127
+ output += "\n"
128
+ return output
129
+
130
+ process_btn.click(
131
+ process_and_show_completion,
132
+ inputs=[video_input, anomaly_threshold, fps_slider],
133
+ outputs=[
134
+ execution_time, results_text, df_store,
135
+ mse_features_store, mse_posture_store,
136
+ mse_features_plot, mse_posture_plot,
137
+ mse_features_hist, mse_posture_hist,
138
+ mse_features_heatmap, mse_posture_heatmap,
139
+ anomaly_frames_features, anomaly_frames_posture,
140
+ face_samples_most_frequent, face_samples_others,
141
+ aligned_faces_folder_store, frames_folder_store,
142
+ mse_heatmap_embeddings_store, mse_heatmap_posture_store,
143
+ anomaly_sentences_features_output, anomaly_sentences_posture_output
144
+ ]
145
+ ).then(
146
+ lambda: gr.Group(visible=True),
147
+ inputs=None,
148
+ outputs=[results_group]
149
+ )
150
+
151
+ if __name__ == "__main__":
152
+ iface.launch()
pose_analysis.py ADDED
@@ -0,0 +1,135 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import math
2
+ import cv2
3
+ import mediapipe as mp
4
+
5
+ mp_pose = mp.solutions.pose
6
+ mp_drawing = mp.solutions.drawing_utils
7
+ pose = mp_pose.Pose(static_image_mode=False, min_detection_confidence=0.7, min_tracking_confidence=0.7)
8
+
9
+ def calculate_posture_score(frame):
10
+ image_height, image_width, _ = frame.shape
11
+ results = pose.process(cv2.cvtColor(frame, cv2.COLOR_BGR2RGB))
12
+
13
+ if not results.pose_landmarks:
14
+ return None, None
15
+
16
+ landmarks = results.pose_landmarks.landmark
17
+
18
+ # Use only body landmarks
19
+ left_shoulder = landmarks[mp_pose.PoseLandmark.LEFT_SHOULDER.value]
20
+ right_shoulder = landmarks[mp_pose.PoseLandmark.RIGHT_SHOULDER.value]
21
+ left_hip = landmarks[mp_pose.PoseLandmark.LEFT_HIP.value]
22
+ right_hip = landmarks[mp_pose.PoseLandmark.RIGHT_HIP.value]
23
+ left_knee = landmarks[mp_pose.PoseLandmark.LEFT_KNEE.value]
24
+ right_knee = landmarks[mp_pose.PoseLandmark.RIGHT_KNEE.value]
25
+
26
+ # Calculate angles
27
+ shoulder_angle = abs(math.degrees(math.atan2(right_shoulder.y - left_shoulder.y, right_shoulder.x - left_shoulder.x)))
28
+ hip_angle = abs(math.degrees(math.atan2(right_hip.y - left_hip.y, right_hip.x - left_hip.x)))
29
+ knee_angle = abs(math.degrees(math.atan2(right_knee.y - left_knee.y, right_knee.x - left_knee.x)))
30
+
31
+ # Calculate vertical alignment
32
+ shoulder_hip_alignment = abs((left_shoulder.y + right_shoulder.y) / 2 - (left_hip.y + right_hip.y) / 2)
33
+ hip_knee_alignment = abs((left_hip.y + right_hip.y) / 2 - (left_knee.y + right_knee.y) / 2)
34
+ # Add head landmarks
35
+ nose = landmarks[mp_pose.PoseLandmark.NOSE.value]
36
+ left_ear = landmarks[mp_pose.PoseLandmark.LEFT_EAR.value]
37
+ right_ear = landmarks[mp_pose.PoseLandmark.RIGHT_EAR.value]
38
+ # Calculate head tilt
39
+ head_tilt = abs(math.degrees(math.atan2(right_ear.y - left_ear.y, right_ear.x - left_ear.x)))
40
+ # Calculate head position relative to shoulders
41
+ head_position = abs((nose.y - (left_shoulder.y + right_shoulder.y) / 2) /
42
+ ((left_shoulder.y + right_shoulder.y) / 2 - (left_hip.y + right_hip.y) / 2))
43
+
44
+ # Combine metrics into a single posture score (you may need to adjust these weights)
45
+ posture_score = (
46
+ (1 - abs(shoulder_angle - hip_angle) / 90) * 0.3 +
47
+ (1 - abs(hip_angle - knee_angle) / 90) * 0.2 +
48
+ (1 - shoulder_hip_alignment) * 0.1 +
49
+ (1 - hip_knee_alignment) * 0.1 +
50
+ (1 - abs(head_tilt - 90) / 90) * 0.15 +
51
+ (1 - head_position) * 0.15
52
+ )
53
+
54
+ return posture_score, results.pose_landmarks
55
+
56
+ def draw_pose_landmarks(frame, landmarks):
57
+ annotated_frame = frame.copy()
58
+ # Include relevant landmarks for head position and body
59
+ body_landmarks = [
60
+ mp_pose.PoseLandmark.NOSE,
61
+ mp_pose.PoseLandmark.LEFT_SHOULDER,
62
+ mp_pose.PoseLandmark.RIGHT_SHOULDER,
63
+ mp_pose.PoseLandmark.LEFT_EAR,
64
+ mp_pose.PoseLandmark.RIGHT_EAR,
65
+ mp_pose.PoseLandmark.LEFT_ELBOW,
66
+ mp_pose.PoseLandmark.RIGHT_ELBOW,
67
+ mp_pose.PoseLandmark.LEFT_WRIST,
68
+ mp_pose.PoseLandmark.RIGHT_WRIST,
69
+ mp_pose.PoseLandmark.LEFT_HIP,
70
+ mp_pose.PoseLandmark.RIGHT_HIP,
71
+ mp_pose.PoseLandmark.LEFT_KNEE,
72
+ mp_pose.PoseLandmark.RIGHT_KNEE,
73
+ mp_pose.PoseLandmark.LEFT_ANKLE,
74
+ mp_pose.PoseLandmark.RIGHT_ANKLE
75
+ ]
76
+
77
+ # Connections for head position and body
78
+ body_connections = [
79
+ (mp_pose.PoseLandmark.LEFT_EAR, mp_pose.PoseLandmark.LEFT_SHOULDER),
80
+ (mp_pose.PoseLandmark.RIGHT_EAR, mp_pose.PoseLandmark.RIGHT_SHOULDER),
81
+ (mp_pose.PoseLandmark.NOSE, mp_pose.PoseLandmark.LEFT_SHOULDER),
82
+ (mp_pose.PoseLandmark.NOSE, mp_pose.PoseLandmark.RIGHT_SHOULDER),
83
+ (mp_pose.PoseLandmark.LEFT_SHOULDER, mp_pose.PoseLandmark.RIGHT_SHOULDER),
84
+ (mp_pose.PoseLandmark.LEFT_SHOULDER, mp_pose.PoseLandmark.LEFT_ELBOW),
85
+ (mp_pose.PoseLandmark.RIGHT_SHOULDER, mp_pose.PoseLandmark.RIGHT_ELBOW),
86
+ (mp_pose.PoseLandmark.LEFT_ELBOW, mp_pose.PoseLandmark.LEFT_WRIST),
87
+ (mp_pose.PoseLandmark.RIGHT_ELBOW, mp_pose.PoseLandmark.RIGHT_WRIST),
88
+ (mp_pose.PoseLandmark.LEFT_SHOULDER, mp_pose.PoseLandmark.LEFT_HIP),
89
+ (mp_pose.PoseLandmark.RIGHT_SHOULDER, mp_pose.PoseLandmark.RIGHT_HIP),
90
+ (mp_pose.PoseLandmark.LEFT_HIP, mp_pose.PoseLandmark.RIGHT_HIP),
91
+ (mp_pose.PoseLandmark.LEFT_HIP, mp_pose.PoseLandmark.LEFT_KNEE),
92
+ (mp_pose.PoseLandmark.RIGHT_HIP, mp_pose.PoseLandmark.RIGHT_KNEE),
93
+ (mp_pose.PoseLandmark.LEFT_KNEE, mp_pose.PoseLandmark.LEFT_ANKLE),
94
+ (mp_pose.PoseLandmark.RIGHT_KNEE, mp_pose.PoseLandmark.RIGHT_ANKLE)
95
+ ]
96
+
97
+ # Draw landmarks
98
+ for landmark in body_landmarks:
99
+ if landmark in landmarks.landmark:
100
+ lm = landmarks.landmark[landmark]
101
+ h, w, _ = annotated_frame.shape
102
+ cx, cy = int(lm.x * w), int(lm.y * h)
103
+ cv2.circle(annotated_frame, (cx, cy), 5, (245, 117, 66), -1)
104
+
105
+ # Draw connections
106
+ for connection in body_connections:
107
+ start_lm = landmarks.landmark[connection[0]]
108
+ end_lm = landmarks.landmark[connection[1]]
109
+ h, w, _ = annotated_frame.shape
110
+ start_point = (int(start_lm.x * w), int(start_lm.y * h))
111
+ end_point = (int(end_lm.x * w), int(end_lm.y * h))
112
+ cv2.line(annotated_frame, start_point, end_point, (245, 66, 230), 2)
113
+
114
+ # Highlight head tilt
115
+ left_ear = landmarks.landmark[mp_pose.PoseLandmark.LEFT_EAR]
116
+ right_ear = landmarks.landmark[mp_pose.PoseLandmark.RIGHT_EAR]
117
+ nose = landmarks.landmark[mp_pose.PoseLandmark.NOSE]
118
+
119
+ h, w, _ = annotated_frame.shape
120
+ left_ear_point = (int(left_ear.x * w), int(left_ear.y * h))
121
+ right_ear_point = (int(right_ear.x * w), int(right_ear.y * h))
122
+ nose_point = (int(nose.x * w), int(nose.y * h))
123
+
124
+ # Draw a line between ears to show head tilt
125
+ cv2.line(annotated_frame, left_ear_point, right_ear_point, (0, 255, 0), 2)
126
+
127
+ # Draw a line from nose to the midpoint between shoulders to show head forward/backward tilt
128
+ left_shoulder = landmarks.landmark[mp_pose.PoseLandmark.LEFT_SHOULDER]
129
+ right_shoulder = landmarks.landmark[mp_pose.PoseLandmark.RIGHT_SHOULDER]
130
+ shoulder_mid_x = (left_shoulder.x + right_shoulder.x) / 2
131
+ shoulder_mid_y = (left_shoulder.y + right_shoulder.y) / 2
132
+ shoulder_mid_point = (int(shoulder_mid_x * w), int(shoulder_mid_y * h))
133
+ cv2.line(annotated_frame, nose_point, shoulder_mid_point, (0, 255, 0), 2)
134
+
135
+ return annotated_frame
transcribe.py ADDED
@@ -0,0 +1,84 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+
3
+ import numpy as np
4
+ import torch
5
+ from transformers import AutoModelForSpeechSeq2Seq, AutoProcessor, WhisperFeatureExtractor
6
+ from moviepy.editor import VideoFileClip, AudioFileClip
7
+ import nltk
8
+ nltk.download('punkt', quiet=True)
9
+ from nltk.tokenize import sent_tokenize
10
+
11
+
12
+ def transcribe(video_file, transcribe_to_text=True, transcribe_to_srt=True, target_language='en'):
13
+ device = "cuda:0" if torch.cuda.is_available() else "cpu"
14
+ torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32
15
+
16
+ model_id = "openai/whisper-large-v3"
17
+ model = AutoModelForSpeechSeq2Seq.from_pretrained(
18
+ model_id, torch_dtype=torch_dtype, low_cpu_mem_usage=True, use_safetensors=True
19
+ )
20
+ model.to(device)
21
+
22
+ processor = AutoProcessor.from_pretrained(model_id)
23
+ feature_extractor = WhisperFeatureExtractor.from_pretrained(model_id)
24
+
25
+ video = VideoFileClip(video_file)
26
+ audio = video.audio
27
+ duration = audio.duration
28
+ chunk_duration = 60
29
+ n_chunks = int(np.ceil(duration / chunk_duration))
30
+
31
+ full_transcription = ""
32
+ for i in range(n_chunks):
33
+ start_time = i * chunk_duration
34
+ end_time = min((i + 1) * chunk_duration, duration)
35
+
36
+ audio_chunk = audio.subclip(start_time, end_time)
37
+ temp_file_path = f"temp_audio_chunk_{i}.wav"
38
+ audio_chunk.write_audiofile(temp_file_path, codec='pcm_s16le')
39
+
40
+ sound_array = AudioFileClip(temp_file_path).to_soundarray(fps=16000)
41
+ if sound_array.ndim > 1:
42
+ sound_array = np.mean(sound_array, axis=1)
43
+
44
+ input_features = feature_extractor(sound_array, sampling_rate=16000, return_tensors="pt").input_features
45
+ input_features = input_features.to(device=device, dtype=torch_dtype)
46
+
47
+ with torch.no_grad():
48
+ if target_language:
49
+ model.config.forced_decoder_ids = processor.get_decoder_prompt_ids(language=target_language,
50
+ task="transcribe")
51
+ generated_ids = model.generate(input_features, max_length=448)
52
+ transcription = processor.batch_decode(generated_ids, skip_special_tokens=True)[0]
53
+
54
+ full_transcription += transcription + " "
55
+ os.remove(temp_file_path)
56
+ print(f"Processed chunk {i + 1}/{n_chunks}")
57
+
58
+ # Split the transcription into sentences
59
+ sentences = sent_tokenize(full_transcription.strip())
60
+
61
+ # Estimate time for each sentence based on its length relative to the total transcription
62
+ total_chars = sum(len(s) for s in sentences)
63
+ sentence_times = []
64
+ current_time = 0
65
+ for sentence in sentences:
66
+ sentence_duration = (len(sentence) / total_chars) * duration
67
+ sentence_times.append((current_time, current_time + sentence_duration))
68
+ current_time += sentence_duration
69
+
70
+ output = ""
71
+ if transcribe_to_text:
72
+ output += "Text Transcription:\n" + full_transcription + "\n\n"
73
+
74
+ if transcribe_to_srt:
75
+ output += "SRT Transcription:\n"
76
+ for i, (sentence, (start, end)) in enumerate(zip(sentences, sentence_times), 1):
77
+ output += f"{i}\n{format_time(start)} --> {format_time(end)}\n{sentence}\n\n"
78
+
79
+ return output
80
+
81
+ def format_time(seconds):
82
+ m, s = divmod(seconds, 60)
83
+ h, m = divmod(m, 60)
84
+ return f"{int(h):02d}:{int(m):02d}:{s:06.3f}".replace('.', ',')
utils.py ADDED
@@ -0,0 +1,94 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from nltk import sent_tokenize
2
+ from transcribe import format_time
3
+
4
+ def frame_to_timecode(frame_num, total_frames, duration):
5
+ total_seconds = (frame_num / total_frames) * duration
6
+ hours = int(total_seconds // 3600)
7
+ minutes = int((total_seconds % 3600) // 60)
8
+ seconds = int(total_seconds % 60)
9
+ milliseconds = int((total_seconds - int(total_seconds)) * 1000)
10
+ return f"{hours:02d}:{minutes:02d}:{seconds:02d}.{milliseconds:03d}"
11
+
12
+ def seconds_to_timecode(seconds):
13
+ hours = int(seconds // 3600)
14
+ minutes = int((seconds % 3600) // 60)
15
+ seconds = int(seconds % 60)
16
+ return f"{hours:02d}:{minutes:02d}:{seconds:02d}"
17
+
18
+ def timecode_to_seconds(timecode):
19
+ h, m, s = map(int, timecode.split(':'))
20
+ return h * 3600 + m * 60 + s
21
+
22
+ def add_timecode_to_image(image, timecode):
23
+ from PIL import Image, ImageDraw, ImageFont
24
+ import numpy as np
25
+
26
+ img_pil = Image.fromarray(image)
27
+ draw = ImageDraw.Draw(img_pil)
28
+ font = ImageFont.truetype("arial.ttf", 15)
29
+ draw.text((10, 10), timecode, (255, 0, 0), font=font)
30
+ return np.array(img_pil)
31
+
32
+ def flexible_timecode_to_seconds(timecode):
33
+ try:
34
+ if ',' in timecode:
35
+ h, m, s = timecode.replace(',', '.').split(':')
36
+ else:
37
+ h, m, s = timecode.split(':')
38
+ return int(float(h)) * 3600 + int(float(m)) * 60 + float(s)
39
+ except ValueError:
40
+ print(f"Invalid timecode format: {timecode}")
41
+ return 0
42
+
43
+ def add_timecode_to_image_body(image, timecode):
44
+ from PIL import Image, ImageDraw, ImageFont
45
+ import numpy as np
46
+
47
+ img_pil = Image.fromarray(image)
48
+ draw = ImageDraw.Draw(img_pil)
49
+ font = ImageFont.truetype("arial.ttf", 100)
50
+ draw.text((10, 10), timecode, (255, 0, 0), font=font)
51
+ return np.array(img_pil)
52
+
53
+ def parse_transcription(transcription_output, video_duration):
54
+ # Remove the "Text Transcription:" prefix if it exists
55
+ if transcription_output.startswith("Text Transcription:"):
56
+ transcription_output = transcription_output.split("Text Transcription:", 1)[1].strip()
57
+
58
+ sentences = sent_tokenize(transcription_output)
59
+ total_chars = sum(len(s) for s in sentences)
60
+ sentences_with_timecodes = []
61
+ current_time = 0
62
+
63
+ for sentence in sentences:
64
+ sentence_duration = (len(sentence) / total_chars) * video_duration
65
+ end_time = current_time + sentence_duration
66
+ timecode = format_time(current_time)
67
+ sentences_with_timecodes.append((timecode, sentence))
68
+ current_time = end_time
69
+
70
+ return sentences_with_timecodes
71
+
72
+
73
+ def get_sentences_before_anomalies(sentences_with_timecodes, anomaly_timecodes, time_threshold=5):
74
+ anomaly_sentences = {}
75
+ for anomaly_timecode in anomaly_timecodes:
76
+ try:
77
+ anomaly_time = flexible_timecode_to_seconds(anomaly_timecode)
78
+ relevant_sentences = [
79
+ (timecode, sentence) for timecode, sentence in sentences_with_timecodes
80
+ if 0 <= anomaly_time - flexible_timecode_to_seconds(timecode) <= time_threshold
81
+ ]
82
+ if relevant_sentences:
83
+ # Use the sentences as the key to avoid duplicates
84
+ key = tuple((timecode, sentence) for timecode, sentence in relevant_sentences)
85
+ if key not in anomaly_sentences:
86
+ anomaly_sentences[key] = anomaly_timecode
87
+ except Exception as e:
88
+ print(f"Error processing anomaly timecode {anomaly_timecode}: {str(e)}")
89
+ continue
90
+ return [(timecode, list(sentences)) for sentences, timecode in anomaly_sentences.items()]
91
+
92
+ def timecode_to_seconds(timecode):
93
+ h, m, s = map(float, timecode.split(':'))
94
+ return h * 3600 + m * 60 + s
video_processing.py ADDED
@@ -0,0 +1,347 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import cv2
3
+ import numpy as np
4
+ from moviepy.editor import VideoFileClip
5
+ import tempfile
6
+ import time
7
+ from PIL import Image, ImageDraw, ImageFont
8
+ import math
9
+ from face_analysis import get_face_embedding, cluster_faces, organize_faces_by_person
10
+ from pose_analysis import calculate_posture_score, draw_pose_landmarks
11
+ from anomaly_detection import anomaly_detection
12
+ from visualization import plot_mse, plot_mse_histogram, plot_mse_heatmap
13
+ from utils import frame_to_timecode, parse_transcription, get_sentences_before_anomalies
14
+ from transcribe import transcribe
15
+ import pandas as pd
16
+ from facenet_pytorch import MTCNN
17
+ import torch
18
+ import mediapipe as mp
19
+
20
+ device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
21
+ mtcnn = MTCNN(keep_all=False, device=device, thresholds=[0.95, 0.95, 0.95], min_face_size=80)
22
+
23
+ mp_face_mesh = mp.solutions.face_mesh
24
+ face_mesh = mp_face_mesh.FaceMesh(static_image_mode=False, max_num_faces=1, min_detection_confidence=0.7)
25
+
26
+ mp_pose = mp.solutions.pose
27
+ pose = mp_pose.Pose(static_image_mode=False, min_detection_confidence=0.7, min_tracking_confidence=0.7)
28
+
29
+ def extract_frames(video_path, output_folder, desired_fps, progress_callback=None):
30
+ os.makedirs(output_folder, exist_ok=True)
31
+ clip = VideoFileClip(video_path)
32
+ original_fps = clip.fps
33
+ duration = clip.duration
34
+ total_frames = int(duration * original_fps)
35
+ step = max(1, original_fps / desired_fps)
36
+ total_frames_to_extract = int(total_frames / step)
37
+
38
+ frame_count = 0
39
+ for t in np.arange(0, duration, step / original_fps):
40
+ frame = clip.get_frame(t)
41
+ cv2.imwrite(os.path.join(output_folder, f"frame_{frame_count:04d}.jpg"), cv2.cvtColor(frame, cv2.COLOR_RGB2BGR))
42
+ frame_count += 1
43
+ if progress_callback:
44
+ progress = min(100, (frame_count / total_frames_to_extract) * 100)
45
+ progress_callback(progress, f"Extracting frame")
46
+ if frame_count >= total_frames_to_extract:
47
+ break
48
+ clip.close()
49
+ return frame_count, original_fps
50
+
51
+ def process_frames(frames_folder, aligned_faces_folder, frame_count, progress):
52
+ embeddings_by_frame = {}
53
+ posture_scores_by_frame = {}
54
+ posture_landmarks_by_frame = {}
55
+ aligned_face_paths = []
56
+ frame_files = sorted([f for f in os.listdir(frames_folder) if f.endswith('.jpg')])
57
+
58
+ for i, frame_file in enumerate(frame_files):
59
+ frame_num = int(frame_file.split('_')[1].split('.')[0])
60
+ frame_path = os.path.join(frames_folder, frame_file)
61
+ frame = cv2.imread(frame_path)
62
+
63
+ if frame is not None:
64
+ posture_score, posture_landmarks = calculate_posture_score(frame)
65
+ posture_scores_by_frame[frame_num] = posture_score
66
+ posture_landmarks_by_frame[frame_num] = posture_landmarks
67
+
68
+ boxes, probs = mtcnn.detect(frame)
69
+
70
+ if boxes is not None and len(boxes) > 0 and probs[0] >= 0.99:
71
+ x1, y1, x2, y2 = [int(b) for b in boxes[0]]
72
+ face = frame[y1:y2, x1:x2]
73
+ if face.size > 0:
74
+ results = face_mesh.process(cv2.cvtColor(face, cv2.COLOR_BGR2RGB))
75
+ if results.multi_face_landmarks and is_frontal_face(results.multi_face_landmarks[0].landmark):
76
+ aligned_face = face
77
+
78
+ if aligned_face is not None:
79
+ aligned_face_resized = cv2.resize(aligned_face, (160, 160))
80
+ output_path = os.path.join(aligned_faces_folder, f"frame_{frame_num}_face.jpg")
81
+ cv2.imwrite(output_path, aligned_face_resized)
82
+ aligned_face_paths.append(output_path)
83
+ embedding = get_face_embedding(aligned_face_resized)
84
+ embeddings_by_frame[frame_num] = embedding
85
+
86
+ progress((i + 1) / len(frame_files), f"Processing frame {i + 1} of {len(frame_files)}")
87
+
88
+ return embeddings_by_frame, posture_scores_by_frame, posture_landmarks_by_frame, aligned_face_paths
89
+
90
+ def process_video(video_path, anomaly_threshold, desired_fps, progress=None):
91
+ start_time = time.time()
92
+ output_folder = "output"
93
+ os.makedirs(output_folder, exist_ok=True)
94
+
95
+ GRAPH_COLORS = {
96
+ 'facial_embeddings': 'navy',
97
+ 'body_posture': 'purple'
98
+ }
99
+
100
+ with tempfile.TemporaryDirectory() as temp_dir:
101
+ aligned_faces_folder = os.path.join(temp_dir, 'aligned_faces')
102
+ organized_faces_folder = os.path.join(temp_dir, 'organized_faces')
103
+ os.makedirs(aligned_faces_folder, exist_ok=True)
104
+ os.makedirs(organized_faces_folder, exist_ok=True)
105
+
106
+ clip = VideoFileClip(video_path)
107
+ video_duration = clip.duration
108
+ clip.close()
109
+
110
+ progress(0, "Starting frame extraction")
111
+ frames_folder = os.path.join(temp_dir, 'extracted_frames')
112
+
113
+ def extraction_progress(percent, message):
114
+ progress(percent / 100, f"Extracting frames")
115
+
116
+ frame_count, original_fps = extract_frames(video_path, frames_folder, desired_fps, extraction_progress)
117
+
118
+ progress(1, "Frame extraction complete")
119
+ progress(0.3, "Processing frames")
120
+ embeddings_by_frame, posture_scores_by_frame, posture_landmarks_by_frame, aligned_face_paths = process_frames(
121
+ frames_folder, aligned_faces_folder,
122
+ frame_count,
123
+ progress)
124
+
125
+ if not aligned_face_paths:
126
+ raise ValueError("No faces were extracted from the video.")
127
+
128
+ progress(0.6, "Clustering faces")
129
+ embeddings = [embedding for _, embedding in embeddings_by_frame.items()]
130
+ clusters = cluster_faces(embeddings)
131
+ num_clusters = len(set(clusters))
132
+
133
+ progress(0.7, "Organizing faces")
134
+ organize_faces_by_person(embeddings_by_frame, clusters, aligned_faces_folder, organized_faces_folder)
135
+
136
+ progress(0.8, "Saving person data")
137
+ df, largest_cluster = save_person_data_to_csv(embeddings_by_frame, clusters, desired_fps,
138
+ original_fps, temp_dir, video_duration)
139
+
140
+ df['Seconds'] = df['Timecode'].apply(
141
+ lambda x: sum(float(t) * 60 ** i for i, t in enumerate(reversed(x.split(':')))))
142
+
143
+ progress(0.85, "Getting face samples")
144
+ face_samples = get_all_face_samples(organized_faces_folder, output_folder, largest_cluster)
145
+
146
+ progress(0.9, "Performing anomaly detection")
147
+ embedding_columns = [col for col in df.columns if col.startswith('Raw_Embedding_')]
148
+
149
+ X_embeddings = df[embedding_columns].values
150
+
151
+ try:
152
+ X_posture = np.array([posture_scores_by_frame.get(frame, None) for frame in df['Frame']])
153
+ X_posture = X_posture[X_posture != None].reshape(-1, 1)
154
+
155
+ if len(X_posture) == 0:
156
+ raise ValueError("No valid posture data found")
157
+
158
+ mse_embeddings, mse_posture = anomaly_detection(X_embeddings, X_posture)
159
+
160
+ progress(0.95, "Generating plots")
161
+ mse_plot_embeddings, anomaly_frames_embeddings = plot_mse(df, mse_embeddings, "Facial Features",
162
+ color=GRAPH_COLORS['facial_embeddings'],
163
+ anomaly_threshold=anomaly_threshold)
164
+
165
+ mse_histogram_embeddings = plot_mse_histogram(mse_embeddings, "MSE Distribution: Facial Features",
166
+ anomaly_threshold, color=GRAPH_COLORS['facial_embeddings'])
167
+
168
+ mse_plot_posture, anomaly_frames_posture = plot_mse(df, mse_posture, "Body Posture",
169
+ color=GRAPH_COLORS['body_posture'],
170
+ anomaly_threshold=anomaly_threshold)
171
+
172
+ mse_histogram_posture = plot_mse_histogram(mse_posture, "MSE Distribution: Body Posture",
173
+ anomaly_threshold, color=GRAPH_COLORS['body_posture'])
174
+
175
+ mse_heatmap_posture = plot_mse_heatmap(mse_posture, "Body Posture MSE Heatmap", df)
176
+
177
+ mse_heatmap_embeddings = plot_mse_heatmap(mse_embeddings, "Facial Features MSE Heatmap", df)
178
+
179
+ except Exception as e:
180
+ print(f"Error details: {str(e)}")
181
+ import traceback
182
+ traceback.print_exc()
183
+ return (f"Error in video processing: {str(e)}",) + (None,) * 14
184
+
185
+ # Add transcription
186
+ progress(0.96, "Transcribing video")
187
+ transcription_output = transcribe(video_path, transcribe_to_text=True, transcribe_to_srt=False,
188
+ target_language='en')
189
+
190
+ # Parse the transcription output to get sentences and their timecodes
191
+ sentences_with_timecodes = parse_transcription(transcription_output, video_duration)
192
+
193
+ # Get anomaly timecodes
194
+ anomaly_timecodes_features = [df[df['Frame'] == frame]['Timecode'].iloc[0] for frame in
195
+ anomaly_frames_embeddings]
196
+ anomaly_timecodes_posture = [df[df['Frame'] == frame]['Timecode'].iloc[0] for frame in anomaly_frames_posture]
197
+
198
+ anomaly_sentences_features = get_sentences_before_anomalies(sentences_with_timecodes,
199
+ anomaly_timecodes_features)
200
+ anomaly_sentences_posture = get_sentences_before_anomalies(sentences_with_timecodes,
201
+ anomaly_timecodes_posture)
202
+ progress(1.0, "Preparing results")
203
+ results = f"Number of persons detected: {num_clusters}\n\n"
204
+ results += "Breakdown:\n"
205
+ for cluster_id in range(num_clusters):
206
+ face_count = len([c for c in clusters if c == cluster_id])
207
+ results += f"Person {cluster_id + 1}: {face_count} face frames\n"
208
+
209
+ end_time = time.time()
210
+ execution_time = end_time - start_time
211
+
212
+ def add_timecode_to_image(image, timecode):
213
+ img_pil = Image.fromarray(image)
214
+ draw = ImageDraw.Draw(img_pil)
215
+ font = ImageFont.truetype("arial.ttf", 15)
216
+ draw.text((10, 10), timecode, (255, 0, 0), font=font)
217
+ return np.array(img_pil)
218
+
219
+ anomaly_faces_embeddings = []
220
+ for frame in anomaly_frames_embeddings:
221
+ face_path = os.path.join(aligned_faces_folder, f"frame_{frame}_face.jpg")
222
+ if os.path.exists(face_path):
223
+ face_img = cv2.imread(face_path)
224
+ if face_img is not None:
225
+ face_img = cv2.cvtColor(face_img, cv2.COLOR_BGR2RGB)
226
+ timecode = df[df['Frame'] == frame]['Timecode'].iloc[0]
227
+ face_img_with_timecode = add_timecode_to_image(face_img, timecode)
228
+ anomaly_faces_embeddings.append(face_img_with_timecode)
229
+
230
+ anomaly_frames_posture_images = []
231
+ for frame in anomaly_frames_posture:
232
+ frame_path = os.path.join(frames_folder, f"frame_{frame:04d}.jpg")
233
+ if os.path.exists(frame_path):
234
+ frame_img = cv2.imread(frame_path)
235
+ if frame_img is not None:
236
+ frame_img = cv2.cvtColor(frame_img, cv2.COLOR_BGR2RGB)
237
+ pose_results = pose.process(frame_img)
238
+ if pose_results.pose_landmarks:
239
+ frame_img = draw_pose_landmarks(frame_img, pose_results.pose_landmarks)
240
+ timecode = df[df['Frame'] == frame]['Timecode'].iloc[0]
241
+ frame_img_with_timecode = add_timecode_to_image(frame_img, timecode)
242
+ anomaly_frames_posture_images.append(frame_img_with_timecode)
243
+
244
+ return (
245
+ execution_time,
246
+ results,
247
+ df,
248
+ mse_embeddings,
249
+ mse_posture,
250
+ mse_plot_embeddings,
251
+ mse_histogram_embeddings,
252
+ mse_plot_posture,
253
+ mse_histogram_posture,
254
+ mse_heatmap_embeddings,
255
+ mse_heatmap_posture,
256
+ face_samples["most_frequent"],
257
+ face_samples["others"],
258
+ anomaly_faces_embeddings,
259
+ anomaly_frames_posture_images,
260
+ aligned_faces_folder,
261
+ frames_folder,
262
+ anomaly_sentences_features,
263
+ anomaly_sentences_posture
264
+ )
265
+
266
+ def is_frontal_face(landmarks, threshold=40):
267
+ nose_tip = landmarks[4]
268
+ left_chin = landmarks[234]
269
+ right_chin = landmarks[454]
270
+ nose_to_left = [left_chin.x - nose_tip.x, left_chin.y - nose_tip.y]
271
+ nose_to_right = [right_chin.x - nose_tip.x, right_chin.y - nose_tip.y]
272
+ dot_product = nose_to_left[0] * nose_to_right[0] + nose_to_left[1] * nose_to_right[1]
273
+ magnitude_left = math.sqrt(nose_to_left[0] ** 2 + nose_to_left[1] ** 2)
274
+ magnitude_right = math.sqrt(nose_to_right[0] ** 2 + nose_to_right[1] ** 2)
275
+ cos_angle = dot_product / (magnitude_left * magnitude_right)
276
+ angle = math.acos(cos_angle)
277
+ angle_degrees = math.degrees(angle)
278
+ return abs(180 - angle_degrees) < threshold
279
+
280
+ def save_person_data_to_csv(embeddings_by_frame, clusters, desired_fps, original_fps, output_folder, video_duration):
281
+ person_data = {}
282
+
283
+ for (frame_num, embedding), cluster in zip(embeddings_by_frame.items(), clusters):
284
+ if cluster not in person_data:
285
+ person_data[cluster] = []
286
+ person_data[cluster].append((frame_num, embedding))
287
+
288
+ largest_cluster = max(person_data, key=lambda k: len(person_data[k]))
289
+
290
+ data = person_data[largest_cluster]
291
+ data.sort(key=lambda x: x[0])
292
+ frames, embeddings = zip(*data)
293
+
294
+ embeddings_array = np.array(embeddings)
295
+ np.save(os.path.join(output_folder, 'face_embeddings.npy'), embeddings_array)
296
+
297
+ total_frames = max(frames)
298
+ timecodes = [frame_to_timecode(frame, total_frames, video_duration) for frame in frames]
299
+
300
+ df_data = {
301
+ 'Frame': frames,
302
+ 'Timecode': timecodes,
303
+ 'Embedding_Index': range(len(embeddings))
304
+ }
305
+
306
+ for i in range(len(embeddings[0])):
307
+ df_data[f'Raw_Embedding_{i}'] = [embedding[i] for embedding in embeddings]
308
+
309
+ df = pd.DataFrame(df_data)
310
+
311
+ return df, largest_cluster
312
+
313
+ def get_all_face_samples(organized_faces_folder, output_folder, largest_cluster, max_samples=100):
314
+ face_samples = {"most_frequent": [], "others": []}
315
+ for cluster_folder in sorted(os.listdir(organized_faces_folder)):
316
+ if cluster_folder.startswith("person_"):
317
+ person_folder = os.path.join(organized_faces_folder, cluster_folder)
318
+ face_files = sorted([f for f in os.listdir(person_folder) if f.endswith('.jpg')])
319
+ if face_files:
320
+ cluster_id = int(cluster_folder.split('_')[1])
321
+ if cluster_id == largest_cluster:
322
+ for i, sample in enumerate(face_files[:max_samples]):
323
+ face_path = os.path.join(person_folder, sample)
324
+ output_path = os.path.join(output_folder, f"face_sample_most_frequent_{i:04d}.jpg")
325
+ face_img = cv2.imread(face_path)
326
+ if face_img is not None:
327
+ small_face = cv2.resize(face_img, (160, 160))
328
+ cv2.imwrite(output_path, small_face)
329
+ face_samples["most_frequent"].append(output_path)
330
+ if len(face_samples["most_frequent"]) >= max_samples:
331
+ break
332
+ else:
333
+ remaining_samples = max_samples - len(face_samples["others"])
334
+ if remaining_samples > 0:
335
+ for i, sample in enumerate(face_files[:remaining_samples]):
336
+ face_path = os.path.join(person_folder, sample)
337
+ output_path = os.path.join(output_folder, f"face_sample_other_{cluster_id:02d}_{i:04d}.jpg")
338
+ face_img = cv2.imread(face_path)
339
+ if face_img is not None:
340
+ small_face = cv2.resize(face_img, (160, 160))
341
+ cv2.imwrite(output_path, small_face)
342
+ face_samples["others"].append(output_path)
343
+ if len(face_samples["others"]) >= max_samples:
344
+ break
345
+ return face_samples
346
+
347
+
visualization.py ADDED
@@ -0,0 +1,177 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import matplotlib.pyplot as plt
2
+ import seaborn as sns
3
+ import numpy as np
4
+ import pandas as pd
5
+ from matplotlib.patches import Rectangle
6
+ from utils import seconds_to_timecode
7
+ from anomaly_detection import determine_anomalies
8
+
9
+ def plot_mse(df, mse_values, title, color='navy', time_threshold=3, anomaly_threshold=4):
10
+ plt.figure(figsize=(16, 8), dpi=400)
11
+ fig, ax = plt.subplots(figsize=(16, 8))
12
+
13
+ if 'Seconds' not in df.columns:
14
+ df['Seconds'] = df['Timecode'].apply(
15
+ lambda x: sum(float(t) * 60 ** i for i, t in enumerate(reversed(x.split(':')))))
16
+
17
+ # Ensure df and mse_values have the same length and remove NaN values
18
+ min_length = min(len(df), len(mse_values))
19
+ df = df.iloc[:min_length]
20
+ mse_values = mse_values[:min_length]
21
+
22
+ # Remove NaN values
23
+ mask = ~np.isnan(mse_values)
24
+ df = df[mask]
25
+ mse_values = mse_values[mask]
26
+
27
+ mean = pd.Series(mse_values).rolling(window=10).mean()
28
+ std = pd.Series(mse_values).rolling(window=10).std()
29
+ median = np.median(mse_values)
30
+
31
+ ax.scatter(df['Seconds'], mse_values, color=color, alpha=0.3, s=5)
32
+ ax.plot(df['Seconds'], mean, color=color, linewidth=0.5)
33
+ ax.fill_between(df['Seconds'], mean - std, mean + std, color=color, alpha=0.1)
34
+
35
+ # Add median line
36
+ ax.axhline(y=median, color='black', linestyle='--', label='Median Baseline')
37
+
38
+ # Add threshold line
39
+ threshold = np.mean(mse_values) + anomaly_threshold * np.std(mse_values)
40
+ ax.axhline(y=threshold, color='red', linestyle='--', label=f'Threshold: {anomaly_threshold:.1f}')
41
+ ax.text(ax.get_xlim()[1], threshold, f'Threshold: {anomaly_threshold:.1f}', verticalalignment='center', horizontalalignment='left', color='red')
42
+
43
+ anomalies = determine_anomalies(mse_values, anomaly_threshold)
44
+ anomaly_frames = df['Frame'].iloc[anomalies].tolist()
45
+
46
+ ax.scatter(df['Seconds'].iloc[anomalies], mse_values[anomalies], color='red', s=20, zorder=5)
47
+
48
+ anomaly_data = list(zip(df['Timecode'].iloc[anomalies],
49
+ df['Seconds'].iloc[anomalies],
50
+ mse_values[anomalies]))
51
+ anomaly_data.sort(key=lambda x: x[1])
52
+
53
+ grouped_anomalies = []
54
+ current_group = []
55
+ for timecode, sec, mse in anomaly_data:
56
+ if not current_group or sec - current_group[-1][1] <= time_threshold:
57
+ current_group.append((timecode, sec, mse))
58
+ else:
59
+ grouped_anomalies.append(current_group)
60
+ current_group = [(timecode, sec, mse)]
61
+ if current_group:
62
+ grouped_anomalies.append(current_group)
63
+
64
+ for group in grouped_anomalies:
65
+ start_sec = group[0][1]
66
+ end_sec = group[-1][1]
67
+ rect = Rectangle((start_sec, ax.get_ylim()[0]), end_sec - start_sec, ax.get_ylim()[1] - ax.get_ylim()[0],
68
+ facecolor='red', alpha=0.2, zorder=1)
69
+ ax.add_patch(rect)
70
+
71
+ for group in grouped_anomalies:
72
+ highest_mse_anomaly = max(group, key=lambda x: x[2])
73
+ timecode, sec, mse = highest_mse_anomaly
74
+ ax.annotate(timecode, (sec, mse), textcoords="offset points", xytext=(0, 10),
75
+ ha='center', fontsize=6, color='red')
76
+
77
+ max_seconds = df['Seconds'].max()
78
+ num_ticks = 100
79
+ tick_locations = np.linspace(0, max_seconds, num_ticks)
80
+ tick_labels = [seconds_to_timecode(int(s)) for s in tick_locations]
81
+
82
+ ax.set_xticks(tick_locations)
83
+ ax.set_xticklabels(tick_labels, rotation=90, ha='center', fontsize=6)
84
+
85
+ ax.set_xlabel('Timecode')
86
+ ax.set_ylabel('Mean Squared Error')
87
+ ax.set_title(title)
88
+
89
+ ax.grid(True, linestyle='--', alpha=0.7)
90
+ ax.legend()
91
+ plt.tight_layout()
92
+ plt.close()
93
+ return fig, anomaly_frames
94
+
95
+ def plot_mse_histogram(mse_values, title, anomaly_threshold, color='blue'):
96
+ plt.figure(figsize=(16, 3), dpi=400)
97
+ fig, ax = plt.subplots(figsize=(16, 3))
98
+
99
+ ax.hist(mse_values, bins=100, edgecolor='black', color=color, alpha=0.7)
100
+ ax.set_xlabel('Mean Squared Error')
101
+ ax.set_ylabel('Number of Samples')
102
+ ax.set_title(title)
103
+
104
+ mean = np.mean(mse_values)
105
+ std = np.std(mse_values)
106
+ threshold = mean + anomaly_threshold * std
107
+
108
+ ax.axvline(x=threshold, color='red', linestyle='--', linewidth=2)
109
+
110
+ plt.tight_layout()
111
+ plt.close()
112
+ return fig
113
+
114
+ def plot_mse_heatmap(mse_values, title, df):
115
+ plt.figure(figsize=(20, 3), dpi=400)
116
+ fig, ax = plt.subplots(figsize=(20, 3))
117
+
118
+ # Reshape MSE values to 2D array for heatmap
119
+ mse_2d = mse_values.reshape(1, -1)
120
+
121
+ # Create heatmap
122
+ sns.heatmap(mse_2d, cmap='YlOrRd', cbar=False, ax=ax)
123
+
124
+ # Set x-axis ticks to timecodes
125
+ num_ticks = 60
126
+ tick_locations = np.linspace(0, len(mse_values) - 1, num_ticks).astype(int)
127
+ tick_labels = [df['Timecode'].iloc[i] for i in tick_locations]
128
+
129
+ ax.set_xticks(tick_locations)
130
+ ax.set_xticklabels(tick_labels, rotation=90, ha='center', va='top')
131
+
132
+ ax.set_title(title)
133
+
134
+ # Remove y-axis labels
135
+ ax.set_yticks([])
136
+
137
+ plt.tight_layout()
138
+ plt.close()
139
+ return fig
140
+
141
+ def plot_posture(df, posture_scores, color='blue', anomaly_threshold=3):
142
+ plt.figure(figsize=(16, 8), dpi=400)
143
+ fig, ax = plt.subplots(figsize=(16, 8))
144
+
145
+ df['Seconds'] = df['Timecode'].apply(
146
+ lambda x: sum(float(t) * 60 ** i for i, t in enumerate(reversed(x.split(':')))))
147
+
148
+ posture_data = [(frame, score) for frame, score in posture_scores.items() if score is not None]
149
+ posture_frames, posture_scores = zip(*posture_data)
150
+
151
+ # Create a new dataframe for posture data
152
+ posture_df = pd.DataFrame({'Frame': posture_frames, 'Score': posture_scores})
153
+
154
+
155
+ posture_df = posture_df.merge(df[['Frame', 'Seconds']], on='Frame', how='inner')
156
+
157
+ ax.scatter(posture_df['Seconds'], posture_df['Score'], color=color, alpha=0.3, s=5)
158
+ mean = posture_df['Score'].rolling(window=10).mean()
159
+ ax.plot(posture_df['Seconds'], mean, color=color, linewidth=0.5)
160
+
161
+ ax.set_xlabel('Timecode')
162
+ ax.set_ylabel('Posture Score')
163
+ ax.set_title("Body Posture Over Time")
164
+
165
+ ax.grid(True, linestyle='--', alpha=0.7)
166
+
167
+ max_seconds = df['Seconds'].max()
168
+ num_ticks = 80
169
+ tick_locations = np.linspace(0, max_seconds, num_ticks)
170
+ tick_labels = [seconds_to_timecode(int(s)) for s in tick_locations]
171
+
172
+ ax.set_xticks(tick_locations)
173
+ ax.set_xticklabels(tick_labels, rotation=90, ha='center', fontsize=6)
174
+
175
+ plt.tight_layout()
176
+ plt.close()
177
+ return fig