File size: 6,385 Bytes
bafab47
 
 
 
064088f
bafab47
064088f
 
bafab47
 
afe7a1d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8ed31f9
afe7a1d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bafab47
8ed31f9
 
18d311d
8ed31f9
 
 
95703f6
8ed31f9
 
 
0c3c81c
064088f
8ed31f9
162ac6d
93212ca
 
162ac6d
064088f
8ed31f9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
610cab7
24bcbfe
610cab7
 
064088f
 
 
 
 
 
 
 
 
 
c500bb3
162ac6d
064088f
162ac6d
 
8ed31f9
064088f
 
aeb4947
 
162ac6d
064088f
 
 
 
162ac6d
064088f
 
 
8ed31f9
162ac6d
 
 
064088f
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
import gradio as gr
import time
from video_processing import process_video
from PIL import Image
import matplotlib

matplotlib.rcParams['figure.dpi'] = 300
matplotlib.rcParams['savefig.dpi'] = 300

def process_and_show_completion(video_input_path, anomaly_threshold_input, fps, progress=gr.Progress()):
    try:
        print("Starting video processing...")
        results = process_video(video_input_path, anomaly_threshold_input, fps, progress=progress)
        print("Video processing completed.")

        if isinstance(results[0], str) and results[0].startswith("Error"):
            print(f"Error occurred: {results[0]}")
            return [results[0]] + [None] * 27

        exec_time, results_summary, df, mse_embeddings, mse_posture, mse_voice, \
            mse_plot_embeddings, mse_plot_posture, mse_plot_voice, \
            mse_histogram_embeddings, mse_histogram_posture, mse_histogram_voice, \
            mse_heatmap_embeddings, mse_heatmap_posture, mse_heatmap_voice, \
            face_samples_frequent, \
            anomaly_faces_embeddings, anomaly_frames_posture_images, \
            aligned_faces_folder, frames_folder, \
            heatmap_video_path, combined_mse_plot, correlation_heatmap = results

        anomaly_faces_embeddings_pil = [Image.fromarray(face) for face in anomaly_faces_embeddings] if anomaly_faces_embeddings is not None else []
        anomaly_frames_posture_pil = [Image.fromarray(frame) for frame in anomaly_frames_posture_images] if anomaly_frames_posture_images is not None else []

        face_samples_frequent = [Image.open(path) for path in face_samples_frequent] if face_samples_frequent is not None else []

        output = [
            exec_time, results_summary,
            df, mse_embeddings, mse_posture, mse_voice,
            mse_plot_embeddings, mse_plot_posture, mse_plot_voice,
            mse_histogram_embeddings, mse_histogram_posture, mse_histogram_voice,
            mse_heatmap_embeddings, mse_heatmap_posture, mse_heatmap_voice,
            anomaly_faces_embeddings_pil, anomaly_frames_posture_pil,
            face_samples_frequent,
            aligned_faces_folder, frames_folder,
            mse_embeddings, mse_posture, mse_voice,
            heatmap_video_path, combined_mse_plot, correlation_heatmap
        ]

        return output

    except Exception as e:
        error_message = f"An error occurred: {str(e)}"
        print(error_message)
        import traceback
        traceback.print_exc()
        return [error_message] + [None] * 27

def show_results(outputs):
    return gr.Group(visible=True)

with gr.Blocks() as iface:
    gr.Markdown("""
    # Multimodal Behavioral Anomalies Detection

    This tool detects anomalies in facial expressions, body language, and voice over the timeline of a video.
    It extracts faces, postures, and voice from video frames, and analyzes them to identify anomalies using time series analysis and a variational autoencoder (VAE) approach.
    """)

    with gr.Row():
        video_input = gr.Video()

    anomaly_threshold = gr.Slider(minimum=1, maximum=5, step=0.1, value=3, label="Anomaly Detection Threshold (Standard deviation)")
    fps_slider = gr.Slider(minimum=5, maximum=20, step=1, value=10, label="Frames Per Second (FPS)")
    process_btn = gr.Button("Detect Anomalies")
    progress_bar = gr.Progress()
    execution_time = gr.Number(label="Execution Time (seconds)")

    with gr.Group(visible=False) as results_group:
        with gr.Tabs():
            with gr.TabItem("Facial Features"):
                results_text = gr.TextArea(label="Faces Breakdown", lines=5)
                mse_features_plot = gr.Plot(label="MSE: Facial Features")
                mse_features_hist = gr.Plot(label="MSE Distribution: Facial Features")
                mse_features_heatmap = gr.Plot(label="MSE Heatmap: Facial Features")
                anomaly_frames_features = gr.Gallery(label="Anomaly Frames (Facial Features)", columns=6, rows=2, height="auto")
                face_samples_most_frequent = gr.Gallery(label="Most Frequent Person Samples", columns=10, rows=2, height="auto")

            with gr.TabItem("Body Posture"):
                mse_posture_plot = gr.Plot(label="MSE: Body Posture")
                mse_posture_hist = gr.Plot(label="MSE Distribution: Body Posture")
                mse_posture_heatmap = gr.Plot(label="MSE Heatmap: Body Posture")
                anomaly_frames_posture = gr.Gallery(label="Anomaly Frames (Body Posture)", columns=6, rows=2, height="auto")

            with gr.TabItem("Voice"):
                mse_voice_plot = gr.Plot(label="MSE: Voice")
                mse_voice_hist = gr.Plot(label="MSE Distribution: Voice")
                mse_voice_heatmap = gr.Plot(label="MSE Heatmap: Voice")

            with gr.TabItem("Combined"):
                heatmap_video = gr.Video(label="Video with Anomaly Heatmap")
                combined_mse_plot = gr.Plot(label="Combined MSE Plot")
                correlation_heatmap_plot = gr.Plot(label="Correlation Heatmap")

        gr.Markdown("""
    XYZ
    """)
                
    df_store = gr.State()
    mse_features_store = gr.State()
    mse_posture_store = gr.State()
    mse_voice_store = gr.State()
    aligned_faces_folder_store = gr.State()
    frames_folder_store = gr.State()
    mse_heatmap_embeddings_store = gr.State()
    mse_heatmap_posture_store = gr.State()
    mse_heatmap_voice_store = gr.State()
    
    process_btn.click(
        process_and_show_completion,
        inputs=[video_input, anomaly_threshold, fps_slider],
        outputs=[
            execution_time, results_text, df_store,
            mse_features_store, mse_posture_store, mse_voice_store,
            mse_features_plot, mse_posture_plot, mse_voice_plot,
            mse_features_hist, mse_posture_hist, mse_voice_hist,
            mse_features_heatmap, mse_posture_heatmap, mse_voice_heatmap,
            anomaly_frames_features, anomaly_frames_posture,
            face_samples_most_frequent,
            aligned_faces_folder_store, frames_folder_store,
            mse_heatmap_embeddings_store, mse_heatmap_posture_store, mse_heatmap_voice_store,
            heatmap_video, combined_mse_plot, correlation_heatmap_plot
        ]
    ).then(
        show_results,
        inputs=None,
        outputs=results_group
    )

if __name__ == "__main__":
    iface.launch()