Update app.py
Browse files
app.py
CHANGED
@@ -56,9 +56,12 @@ def process_and_show_completion(video_input_path, anomaly_threshold_input, fps,
|
|
56 |
def show_results(outputs):
|
57 |
return gr.Tabs(visible=True), gr.Group(visible=True)
|
58 |
|
|
|
|
|
|
|
59 |
with gr.Blocks() as iface:
|
60 |
with gr.Row():
|
61 |
-
video_input = gr.Video(label="Input Video")
|
62 |
|
63 |
anomaly_threshold = gr.Slider(minimum=1, maximum=5, step=0.1, value=3, label="Anomaly Detection Threshold (Standard deviation)")
|
64 |
fps_slider = gr.Slider(minimum=5, maximum=20, step=1, value=10, label="Frames Per Second (FPS)")
|
@@ -69,8 +72,8 @@ with gr.Blocks() as iface:
|
|
69 |
with execution_time_group:
|
70 |
execution_time = gr.Number(label="Execution Time (seconds)")
|
71 |
|
72 |
-
with gr.Tabs(
|
73 |
-
with gr.
|
74 |
gr.Markdown("""
|
75 |
# Multimodal Behavioral Anomalies Detection
|
76 |
|
@@ -78,7 +81,7 @@ with gr.Blocks() as iface:
|
|
78 |
It extracts faces, postures, and voice from video frames, and analyzes them to identify anomalies using time series analysis and a variational autoencoder (VAE) approach.
|
79 |
""")
|
80 |
|
81 |
-
with gr.
|
82 |
results_text = gr.TextArea(label="Faces Breakdown", lines=5)
|
83 |
mse_features_plot = gr.Plot(label="MSE: Facial Features")
|
84 |
mse_features_hist = gr.Plot(label="MSE Distribution: Facial Features")
|
@@ -86,19 +89,19 @@ with gr.Blocks() as iface:
|
|
86 |
anomaly_frames_features = gr.Gallery(label="Anomaly Frames (Facial Features)", columns=6, rows=2, height="auto")
|
87 |
face_samples_most_frequent = gr.Gallery(label="Most Frequent Person Samples", columns=10, rows=2, height="auto")
|
88 |
|
89 |
-
with gr.
|
90 |
mse_posture_plot = gr.Plot(label="MSE: Body Posture")
|
91 |
mse_posture_hist = gr.Plot(label="MSE Distribution: Body Posture")
|
92 |
mse_posture_heatmap = gr.Plot(label="MSE Heatmap: Body Posture")
|
93 |
anomaly_frames_posture = gr.Gallery(label="Anomaly Frames (Body Posture)", columns=6, rows=2, height="auto")
|
94 |
|
95 |
-
with gr.
|
96 |
mse_voice_plot = gr.Plot(label="MSE: Voice")
|
97 |
mse_voice_hist = gr.Plot(label="MSE Distribution: Voice")
|
98 |
mse_voice_heatmap = gr.Plot(label="MSE Heatmap: Voice")
|
99 |
|
100 |
-
with gr.
|
101 |
-
heatmap_video = gr.Video(label="Video with Anomaly Heatmap"
|
102 |
combined_mse_plot = gr.Plot(label="Combined MSE Plot")
|
103 |
correlation_heatmap_plot = gr.Plot(label="Correlation Heatmap")
|
104 |
|
@@ -113,6 +116,10 @@ with gr.Blocks() as iface:
|
|
113 |
mse_heatmap_voice_store = gr.State()
|
114 |
|
115 |
process_btn.click(
|
|
|
|
|
|
|
|
|
116 |
process_and_show_completion,
|
117 |
inputs=[video_input, anomaly_threshold, fps_slider],
|
118 |
outputs=[
|
@@ -130,7 +137,7 @@ with gr.Blocks() as iface:
|
|
130 |
).then(
|
131 |
show_results,
|
132 |
inputs=None,
|
133 |
-
outputs=[
|
134 |
)
|
135 |
|
136 |
if __name__ == "__main__":
|
|
|
56 |
def show_results(outputs):
|
57 |
return gr.Tabs(visible=True), gr.Group(visible=True)
|
58 |
|
59 |
+
def hide_description_show_results():
|
60 |
+
return gr.Tabs(visible=True), gr.Tab(visible=False)
|
61 |
+
|
62 |
with gr.Blocks() as iface:
|
63 |
with gr.Row():
|
64 |
+
video_input = gr.Video(label="Input Video", visible=False)
|
65 |
|
66 |
anomaly_threshold = gr.Slider(minimum=1, maximum=5, step=0.1, value=3, label="Anomaly Detection Threshold (Standard deviation)")
|
67 |
fps_slider = gr.Slider(minimum=5, maximum=20, step=1, value=10, label="Frames Per Second (FPS)")
|
|
|
72 |
with execution_time_group:
|
73 |
execution_time = gr.Number(label="Execution Time (seconds)")
|
74 |
|
75 |
+
with gr.Tabs() as all_tabs:
|
76 |
+
with gr.Tab("Description", elem_id="description_tab"):
|
77 |
gr.Markdown("""
|
78 |
# Multimodal Behavioral Anomalies Detection
|
79 |
|
|
|
81 |
It extracts faces, postures, and voice from video frames, and analyzes them to identify anomalies using time series analysis and a variational autoencoder (VAE) approach.
|
82 |
""")
|
83 |
|
84 |
+
with gr.Tab("Facial Features", visible=False):
|
85 |
results_text = gr.TextArea(label="Faces Breakdown", lines=5)
|
86 |
mse_features_plot = gr.Plot(label="MSE: Facial Features")
|
87 |
mse_features_hist = gr.Plot(label="MSE Distribution: Facial Features")
|
|
|
89 |
anomaly_frames_features = gr.Gallery(label="Anomaly Frames (Facial Features)", columns=6, rows=2, height="auto")
|
90 |
face_samples_most_frequent = gr.Gallery(label="Most Frequent Person Samples", columns=10, rows=2, height="auto")
|
91 |
|
92 |
+
with gr.Tab("Body Posture", visible=False):
|
93 |
mse_posture_plot = gr.Plot(label="MSE: Body Posture")
|
94 |
mse_posture_hist = gr.Plot(label="MSE Distribution: Body Posture")
|
95 |
mse_posture_heatmap = gr.Plot(label="MSE Heatmap: Body Posture")
|
96 |
anomaly_frames_posture = gr.Gallery(label="Anomaly Frames (Body Posture)", columns=6, rows=2, height="auto")
|
97 |
|
98 |
+
with gr.Tab("Voice", visible=False):
|
99 |
mse_voice_plot = gr.Plot(label="MSE: Voice")
|
100 |
mse_voice_hist = gr.Plot(label="MSE Distribution: Voice")
|
101 |
mse_voice_heatmap = gr.Plot(label="MSE Heatmap: Voice")
|
102 |
|
103 |
+
with gr.Tab("Combined", visible=False):
|
104 |
+
heatmap_video = gr.Video(label="Video with Anomaly Heatmap")
|
105 |
combined_mse_plot = gr.Plot(label="Combined MSE Plot")
|
106 |
correlation_heatmap_plot = gr.Plot(label="Correlation Heatmap")
|
107 |
|
|
|
116 |
mse_heatmap_voice_store = gr.State()
|
117 |
|
118 |
process_btn.click(
|
119 |
+
hide_description_show_results,
|
120 |
+
inputs=None,
|
121 |
+
outputs=[all_tabs, all_tabs.select("Description")]
|
122 |
+
).then(
|
123 |
process_and_show_completion,
|
124 |
inputs=[video_input, anomaly_threshold, fps_slider],
|
125 |
outputs=[
|
|
|
137 |
).then(
|
138 |
show_results,
|
139 |
inputs=None,
|
140 |
+
outputs=[all_tabs, execution_time_group]
|
141 |
)
|
142 |
|
143 |
if __name__ == "__main__":
|