Update app.py
Browse files
app.py
CHANGED
@@ -3,16 +3,11 @@ import time
|
|
3 |
from video_processing import process_video
|
4 |
from PIL import Image
|
5 |
import matplotlib
|
6 |
-
import threading
|
7 |
|
8 |
matplotlib.rcParams['figure.dpi'] = 300
|
9 |
matplotlib.rcParams['savefig.dpi'] = 300
|
10 |
|
11 |
def process_and_show_completion(video_input_path, anomaly_threshold_input, fps, progress=gr.Progress()):
|
12 |
-
global processing
|
13 |
-
processing = True
|
14 |
-
start_time = time.time()
|
15 |
-
|
16 |
try:
|
17 |
print("Starting video processing...")
|
18 |
results = process_video(video_input_path, anomaly_threshold_input, fps, progress=progress)
|
@@ -20,7 +15,6 @@ def process_and_show_completion(video_input_path, anomaly_threshold_input, fps,
|
|
20 |
|
21 |
if isinstance(results[0], str) and results[0].startswith("Error"):
|
22 |
print(f"Error occurred: {results[0]}")
|
23 |
-
processing = False
|
24 |
return [results[0]] + [None] * 27
|
25 |
|
26 |
exec_time, results_summary, df, mse_embeddings, mse_posture, mse_voice, \
|
@@ -37,11 +31,8 @@ def process_and_show_completion(video_input_path, anomaly_threshold_input, fps,
|
|
37 |
|
38 |
face_samples_frequent = [Image.open(path) for path in face_samples_frequent] if face_samples_frequent is not None else []
|
39 |
|
40 |
-
end_time = time.time()
|
41 |
-
total_exec_time = end_time - start_time
|
42 |
-
|
43 |
output = [
|
44 |
-
|
45 |
df, mse_embeddings, mse_posture, mse_voice,
|
46 |
mse_plot_embeddings, mse_plot_posture, mse_plot_voice,
|
47 |
mse_histogram_embeddings, mse_histogram_posture, mse_histogram_voice,
|
@@ -53,7 +44,6 @@ def process_and_show_completion(video_input_path, anomaly_threshold_input, fps,
|
|
53 |
heatmap_video_path, combined_mse_plot, correlation_heatmap
|
54 |
]
|
55 |
|
56 |
-
processing = False
|
57 |
return output
|
58 |
|
59 |
except Exception as e:
|
@@ -61,69 +51,53 @@ def process_and_show_completion(video_input_path, anomaly_threshold_input, fps,
|
|
61 |
print(error_message)
|
62 |
import traceback
|
63 |
traceback.print_exc()
|
64 |
-
processing = False
|
65 |
return [error_message] + [None] * 27
|
66 |
|
67 |
-
def show_results():
|
68 |
-
return
|
69 |
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
def update_execution_time():
|
74 |
-
current_time = time.time() - start_time
|
75 |
-
return f"Execution time: {current_time:.2f} seconds"
|
76 |
|
77 |
-
|
78 |
-
|
|
|
79 |
|
80 |
-
with gr.Blocks() as iface:
|
81 |
with gr.Row():
|
82 |
-
video_input = gr.Video(
|
83 |
|
84 |
anomaly_threshold = gr.Slider(minimum=1, maximum=5, step=0.1, value=3, label="Anomaly Detection Threshold (Standard deviation)")
|
85 |
fps_slider = gr.Slider(minimum=5, maximum=20, step=1, value=10, label="Frames Per Second (FPS)")
|
86 |
process_btn = gr.Button("Detect Anomalies")
|
87 |
progress_bar = gr.Progress()
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
with
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
voice_tab = gr.Tab("Voice", visible=False)
|
117 |
-
with voice_tab:
|
118 |
-
mse_voice_plot = gr.Plot(label="MSE: Voice")
|
119 |
-
mse_voice_hist = gr.Plot(label="MSE Distribution: Voice")
|
120 |
-
mse_voice_heatmap = gr.Plot(label="MSE Heatmap: Voice")
|
121 |
-
|
122 |
-
combined_tab = gr.Tab("Combined", visible=False)
|
123 |
-
with combined_tab:
|
124 |
-
heatmap_video = gr.Video(label="Video with Anomaly Heatmap")
|
125 |
-
combined_mse_plot = gr.Plot(label="Combined MSE Plot")
|
126 |
-
correlation_heatmap_plot = gr.Plot(label="Correlation Heatmap")
|
127 |
|
128 |
df_store = gr.State()
|
129 |
mse_features_store = gr.State()
|
@@ -135,24 +109,11 @@ with gr.Blocks() as iface:
|
|
135 |
mse_heatmap_posture_store = gr.State()
|
136 |
mse_heatmap_voice_store = gr.State()
|
137 |
|
138 |
-
def start_processing():
|
139 |
-
global start_time, processing
|
140 |
-
start_time = time.time()
|
141 |
-
processing = True
|
142 |
-
|
143 |
process_btn.click(
|
144 |
-
start_processing,
|
145 |
-
inputs=None,
|
146 |
-
outputs=None
|
147 |
-
).then(
|
148 |
-
start_execution_timer,
|
149 |
-
inputs=None,
|
150 |
-
outputs=[execution_time_md, description_md]
|
151 |
-
).then(
|
152 |
process_and_show_completion,
|
153 |
inputs=[video_input, anomaly_threshold, fps_slider],
|
154 |
outputs=[
|
155 |
-
|
156 |
mse_features_store, mse_posture_store, mse_voice_store,
|
157 |
mse_features_plot, mse_posture_plot, mse_voice_plot,
|
158 |
mse_features_hist, mse_posture_hist, mse_voice_hist,
|
@@ -166,14 +127,7 @@ with gr.Blocks() as iface:
|
|
166 |
).then(
|
167 |
show_results,
|
168 |
inputs=None,
|
169 |
-
outputs=
|
170 |
-
)
|
171 |
-
|
172 |
-
execution_time_md.change(
|
173 |
-
update_execution_time,
|
174 |
-
inputs=None,
|
175 |
-
outputs=execution_time_md,
|
176 |
-
every=0.1
|
177 |
)
|
178 |
|
179 |
if __name__ == "__main__":
|
|
|
3 |
from video_processing import process_video
|
4 |
from PIL import Image
|
5 |
import matplotlib
|
|
|
6 |
|
7 |
matplotlib.rcParams['figure.dpi'] = 300
|
8 |
matplotlib.rcParams['savefig.dpi'] = 300
|
9 |
|
10 |
def process_and_show_completion(video_input_path, anomaly_threshold_input, fps, progress=gr.Progress()):
|
|
|
|
|
|
|
|
|
11 |
try:
|
12 |
print("Starting video processing...")
|
13 |
results = process_video(video_input_path, anomaly_threshold_input, fps, progress=progress)
|
|
|
15 |
|
16 |
if isinstance(results[0], str) and results[0].startswith("Error"):
|
17 |
print(f"Error occurred: {results[0]}")
|
|
|
18 |
return [results[0]] + [None] * 27
|
19 |
|
20 |
exec_time, results_summary, df, mse_embeddings, mse_posture, mse_voice, \
|
|
|
31 |
|
32 |
face_samples_frequent = [Image.open(path) for path in face_samples_frequent] if face_samples_frequent is not None else []
|
33 |
|
|
|
|
|
|
|
34 |
output = [
|
35 |
+
exec_time, results_summary,
|
36 |
df, mse_embeddings, mse_posture, mse_voice,
|
37 |
mse_plot_embeddings, mse_plot_posture, mse_plot_voice,
|
38 |
mse_histogram_embeddings, mse_histogram_posture, mse_histogram_voice,
|
|
|
44 |
heatmap_video_path, combined_mse_plot, correlation_heatmap
|
45 |
]
|
46 |
|
|
|
47 |
return output
|
48 |
|
49 |
except Exception as e:
|
|
|
51 |
print(error_message)
|
52 |
import traceback
|
53 |
traceback.print_exc()
|
|
|
54 |
return [error_message] + [None] * 27
|
55 |
|
56 |
+
def show_results(outputs):
|
57 |
+
return gr.Group(visible=True)
|
58 |
|
59 |
+
with gr.Blocks() as iface:
|
60 |
+
gr.Markdown("""
|
61 |
+
# Multimodal Behavioral Anomalies Detection
|
|
|
|
|
|
|
62 |
|
63 |
+
This tool detects anomalies in facial expressions, body language, and voice over the timeline of a video.
|
64 |
+
It extracts faces, postures, and voice from video frames, and analyzes them to identify anomalies using time series analysis and a variational autoencoder (VAE) approach.
|
65 |
+
""")
|
66 |
|
|
|
67 |
with gr.Row():
|
68 |
+
video_input = gr.Video()
|
69 |
|
70 |
anomaly_threshold = gr.Slider(minimum=1, maximum=5, step=0.1, value=3, label="Anomaly Detection Threshold (Standard deviation)")
|
71 |
fps_slider = gr.Slider(minimum=5, maximum=20, step=1, value=10, label="Frames Per Second (FPS)")
|
72 |
process_btn = gr.Button("Detect Anomalies")
|
73 |
progress_bar = gr.Progress()
|
74 |
+
execution_time = gr.Number(label="Execution Time (seconds)")
|
75 |
+
|
76 |
+
with gr.Group(visible=False) as results_group:
|
77 |
+
with gr.Tabs():
|
78 |
+
with gr.TabItem("Facial Features"):
|
79 |
+
results_text = gr.TextArea(label="Faces Breakdown", lines=5)
|
80 |
+
mse_features_plot = gr.Plot(label="MSE: Facial Features")
|
81 |
+
mse_features_hist = gr.Plot(label="MSE Distribution: Facial Features")
|
82 |
+
mse_features_heatmap = gr.Plot(label="MSE Heatmap: Facial Features")
|
83 |
+
anomaly_frames_features = gr.Gallery(label="Anomaly Frames (Facial Features)", columns=6, rows=2, height="auto")
|
84 |
+
face_samples_most_frequent = gr.Gallery(label="Most Frequent Person Samples", columns=10, rows=2, height="auto")
|
85 |
+
|
86 |
+
with gr.TabItem("Body Posture"):
|
87 |
+
mse_posture_plot = gr.Plot(label="MSE: Body Posture")
|
88 |
+
mse_posture_hist = gr.Plot(label="MSE Distribution: Body Posture")
|
89 |
+
mse_posture_heatmap = gr.Plot(label="MSE Heatmap: Body Posture")
|
90 |
+
anomaly_frames_posture = gr.Gallery(label="Anomaly Frames (Body Posture)", columns=6, rows=2, height="auto")
|
91 |
+
|
92 |
+
with gr.TabItem("Voice"):
|
93 |
+
mse_voice_plot = gr.Plot(label="MSE: Voice")
|
94 |
+
mse_voice_hist = gr.Plot(label="MSE Distribution: Voice")
|
95 |
+
mse_voice_heatmap = gr.Plot(label="MSE Heatmap: Voice")
|
96 |
+
|
97 |
+
with gr.TabItem("Combined"):
|
98 |
+
heatmap_video = gr.Video(label="Video with Anomaly Heatmap")
|
99 |
+
combined_mse_plot = gr.Plot(label="Combined MSE Plot")
|
100 |
+
correlation_heatmap_plot = gr.Plot(label="Correlation Heatmap")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
101 |
|
102 |
df_store = gr.State()
|
103 |
mse_features_store = gr.State()
|
|
|
109 |
mse_heatmap_posture_store = gr.State()
|
110 |
mse_heatmap_voice_store = gr.State()
|
111 |
|
|
|
|
|
|
|
|
|
|
|
112 |
process_btn.click(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
113 |
process_and_show_completion,
|
114 |
inputs=[video_input, anomaly_threshold, fps_slider],
|
115 |
outputs=[
|
116 |
+
execution_time, results_text, df_store,
|
117 |
mse_features_store, mse_posture_store, mse_voice_store,
|
118 |
mse_features_plot, mse_posture_plot, mse_voice_plot,
|
119 |
mse_features_hist, mse_posture_hist, mse_voice_hist,
|
|
|
127 |
).then(
|
128 |
show_results,
|
129 |
inputs=None,
|
130 |
+
outputs=results_group
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
131 |
)
|
132 |
|
133 |
if __name__ == "__main__":
|