File size: 5,356 Bytes
162ac6d
 
 
 
 
434b870
8efcb6a
 
162ac6d
 
 
 
 
 
 
 
 
8311ce5
2d9c135
711f9d0
 
 
 
 
 
 
 
162ac6d
711f9d0
 
162ac6d
711f9d0
e48aa26
162ac6d
 
 
 
 
 
 
434b870
162ac6d
e48aa26
711f9d0
162ac6d
 
 
 
 
 
 
 
 
8311ce5
162ac6d
 
 
863699a
e48aa26
1622ad2
 
162ac6d
 
 
 
 
93212ca
 
162ac6d
 
 
 
 
 
 
 
 
 
 
 
2d9c135
162ac6d
 
 
 
 
 
 
711f9d0
 
02f425e
162ac6d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
434b870
162ac6d
2d9c135
711f9d0
162ac6d
 
 
 
 
 
 
 
5286b18
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
import gradio as gr
import time
from video_processing import process_video
from PIL import Image
import matplotlib

matplotlib.rcParams['figure.dpi'] = 300
matplotlib.rcParams['savefig.dpi'] = 300

def process_and_show_completion(video_input_path, anomaly_threshold_input, fps, progress=gr.Progress()):
    try:
        print("Starting video processing...")
        results = process_video(video_input_path, anomaly_threshold_input, fps, progress=progress)
        print("Video processing completed.")

        if isinstance(results[0], str) and results[0].startswith("Error"):
            print(f"Error occurred: {results[0]}")
            return [results[0]] + [None] * 18

        exec_time, results_summary, df, mse_embeddings, mse_posture, \
            mse_plot_embeddings, mse_histogram_embeddings, \
            mse_plot_posture, mse_histogram_posture, \
            mse_heatmap_embeddings, mse_heatmap_posture, \
            face_samples_frequent, \
            anomaly_faces_embeddings, anomaly_frames_posture_images, \
            aligned_faces_folder, frames_folder, \
            heatmap_video_path = results

        anomaly_faces_embeddings_pil = [Image.fromarray(face) for face in anomaly_faces_embeddings] if anomaly_faces_embeddings is not None else []
        anomaly_frames_posture_pil = [Image.fromarray(frame) for frame in anomaly_frames_posture_images] if anomaly_frames_posture_images is not None else []

        face_samples_frequent = [Image.open(path) for path in face_samples_frequent] if face_samples_frequent is not None else []

        output = [
            exec_time, results_summary,
            df, mse_embeddings, mse_posture,
            mse_plot_embeddings, mse_plot_posture,
            mse_histogram_embeddings, mse_histogram_posture,
            mse_heatmap_embeddings, mse_heatmap_posture,
            anomaly_faces_embeddings_pil, anomaly_frames_posture_pil,
            face_samples_frequent,
            aligned_faces_folder, frames_folder,
            mse_embeddings, mse_posture,
            heatmap_video_path
        ]

        return output

    except Exception as e:
        error_message = f"An error occurred: {str(e)}"
        print(error_message)
        import traceback
        traceback.print_exc()
        return [error_message] + [None] * 18

with gr.Blocks() as iface:
    gr.Markdown("""
    # Multimodal Behavioral Anomalies Detection

    This tool detects anomalies in facial expressions and body language over the timeline of a video.
    It extracts faces and postures from video frames, and analyzes them to identify anomalies using time series analysis and a variational autoencoder (VAE) approach.
    """)

    with gr.Row():
        video_input = gr.Video()

    anomaly_threshold = gr.Slider(minimum=1, maximum=5, step=0.1, value=3, label="Anomaly Detection Threshold (Standard deviation)")
    fps_slider = gr.Slider(minimum=5, maximum=20, step=1, value=10, label="Frames Per Second (FPS)")
    process_btn = gr.Button("Detect Anomalies")
    progress_bar = gr.Progress()
    execution_time = gr.Number(label="Execution Time (seconds)")

    with gr.Group(visible=False) as results_group:
        results_text = gr.TextArea(label="Anomaly Detection Results", lines=4)

        with gr.Tab("Facial Features"):
            mse_features_plot = gr.Plot(label="MSE: Facial Features")
            mse_features_hist = gr.Plot(label="MSE Distribution: Facial Features")
            mse_features_heatmap = gr.Plot(label="MSE Heatmap: Facial Features")
            anomaly_frames_features = gr.Gallery(label="Anomaly Frames (Facial Features)", columns=6, rows=2, height="auto")
            face_samples_most_frequent = gr.Gallery(label="Most Frequent Person Samples", columns=10, rows=2, height="auto")

        with gr.Tab("Body Posture"):
            mse_posture_plot = gr.Plot(label="MSE: Body Posture")
            mse_posture_hist = gr.Plot(label="MSE Distribution: Body Posture")
            mse_posture_heatmap = gr.Plot(label="MSE Heatmap: Body Posture")
            anomaly_frames_posture = gr.Gallery(label="Anomaly Frames (Body Posture)", columns=6, rows=2, height="auto")

        with gr.Tab("Video with Heatmap"):
            heatmap_video = gr.Video(label="Video with Anomaly Heatmap")

    df_store = gr.State()
    mse_features_store = gr.State()
    mse_posture_store = gr.State()
    aligned_faces_folder_store = gr.State()
    frames_folder_store = gr.State()
    mse_heatmap_embeddings_store = gr.State()
    mse_heatmap_posture_store = gr.State()

    process_btn.click(
        process_and_show_completion,
        inputs=[video_input, anomaly_threshold, fps_slider],
        outputs=[
            execution_time, results_text, df_store,
            mse_features_store, mse_posture_store,
            mse_features_plot, mse_posture_plot,
            mse_features_hist, mse_posture_hist,
            mse_features_heatmap, mse_posture_heatmap,
            anomaly_frames_features, anomaly_frames_posture,
            face_samples_most_frequent,
            aligned_faces_folder_store, frames_folder_store,
            mse_heatmap_embeddings_store, mse_heatmap_posture_store,
            heatmap_video
        ]
    ).then(
        lambda: gr.Group(visible=True),
        inputs=None,
        outputs=[results_group]
    )

if __name__ == "__main__":
    iface.launch()