Update app.py
Browse files
app.py
CHANGED
@@ -15,13 +15,12 @@ def process_and_show_completion(video_input_path, anomaly_threshold_input, fps,
|
|
15 |
|
16 |
if isinstance(results[0], str) and results[0].startswith("Error"):
|
17 |
print(f"Error occurred: {results[0]}")
|
18 |
-
return [results[0]] + [None] *
|
19 |
|
20 |
exec_time, results_summary, df, mse_embeddings, mse_posture, \
|
21 |
mse_plot_embeddings, mse_histogram_embeddings, \
|
22 |
mse_plot_posture, mse_histogram_posture, \
|
23 |
mse_heatmap_embeddings, mse_heatmap_posture, \
|
24 |
-
mse_voice, mse_plot_voice, mse_histogram_voice, mse_heatmap_voice, \
|
25 |
face_samples_frequent, \
|
26 |
anomaly_faces_embeddings, anomaly_frames_posture_images, \
|
27 |
aligned_faces_folder, frames_folder, \
|
@@ -52,14 +51,14 @@ def process_and_show_completion(video_input_path, anomaly_threshold_input, fps,
|
|
52 |
print(error_message)
|
53 |
import traceback
|
54 |
traceback.print_exc()
|
55 |
-
return [error_message] + [None] *
|
56 |
|
57 |
with gr.Blocks() as iface:
|
58 |
gr.Markdown("""
|
59 |
# Multimodal Behavioral Anomalies Detection
|
60 |
|
61 |
-
This tool detects anomalies in facial expressions
|
62 |
-
It extracts faces
|
63 |
""")
|
64 |
|
65 |
with gr.Row():
|
@@ -87,11 +86,6 @@ with gr.Blocks() as iface:
|
|
87 |
mse_posture_heatmap = gr.Plot(label="MSE Heatmap: Body Posture")
|
88 |
anomaly_frames_posture = gr.Gallery(label="Anomaly Frames (Body Posture)", columns=6, rows=2, height="auto")
|
89 |
|
90 |
-
with gr.Tab("Voice"):
|
91 |
-
mse_voice_plot = gr.Plot(label="MSE: Voice")
|
92 |
-
mse_voice_hist = gr.Plot(label="MSE Distribution: Voice")
|
93 |
-
mse_voice_heatmap = gr.Plot(label="MSE Heatmap: Voice")
|
94 |
-
|
95 |
with gr.Tab("Video with Heatmap"):
|
96 |
heatmap_video = gr.Video(label="Video with Anomaly Heatmap")
|
97 |
|
|
|
15 |
|
16 |
if isinstance(results[0], str) and results[0].startswith("Error"):
|
17 |
print(f"Error occurred: {results[0]}")
|
18 |
+
return [results[0]] + [None] * 17
|
19 |
|
20 |
exec_time, results_summary, df, mse_embeddings, mse_posture, \
|
21 |
mse_plot_embeddings, mse_histogram_embeddings, \
|
22 |
mse_plot_posture, mse_histogram_posture, \
|
23 |
mse_heatmap_embeddings, mse_heatmap_posture, \
|
|
|
24 |
face_samples_frequent, \
|
25 |
anomaly_faces_embeddings, anomaly_frames_posture_images, \
|
26 |
aligned_faces_folder, frames_folder, \
|
|
|
51 |
print(error_message)
|
52 |
import traceback
|
53 |
traceback.print_exc()
|
54 |
+
return [error_message] + [None] * 17
|
55 |
|
56 |
with gr.Blocks() as iface:
|
57 |
gr.Markdown("""
|
58 |
# Multimodal Behavioral Anomalies Detection
|
59 |
|
60 |
+
This tool detects anomalies in facial expressions and body language over the timeline of a video.
|
61 |
+
It extracts faces and postures from video frames, and analyzes them to identify anomalies using time series analysis and a variational autoencoder (VAE) approach.
|
62 |
""")
|
63 |
|
64 |
with gr.Row():
|
|
|
86 |
mse_posture_heatmap = gr.Plot(label="MSE Heatmap: Body Posture")
|
87 |
anomaly_frames_posture = gr.Gallery(label="Anomaly Frames (Body Posture)", columns=6, rows=2, height="auto")
|
88 |
|
|
|
|
|
|
|
|
|
|
|
89 |
with gr.Tab("Video with Heatmap"):
|
90 |
heatmap_video = gr.Video(label="Video with Anomaly Heatmap")
|
91 |
|