reab5555 commited on
Commit
2d9c135
·
verified ·
1 Parent(s): 4a50ef6

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +18 -17
app.py CHANGED
@@ -15,15 +15,17 @@ def process_and_show_completion(video_input_path, anomaly_threshold_input, fps,
15
 
16
  if isinstance(results[0], str) and results[0].startswith("Error"):
17
  print(f"Error occurred: {results[0]}")
18
- return [results[0]] + [None] * 17
19
-
20
- exec_time, results_summary, df, mse_embeddings, mse_posture, \
21
- mse_plot_embeddings, mse_histogram_embeddings, \
22
- mse_plot_posture, mse_histogram_posture, \
23
- mse_heatmap_embeddings, mse_heatmap_posture, \
24
- face_samples_frequent, \
25
- anomaly_faces_embeddings, anomaly_frames_posture_images, \
26
- aligned_faces_folder, frames_folder = results
 
 
27
 
28
  anomaly_faces_embeddings_pil = [Image.fromarray(face) for face in anomaly_faces_embeddings]
29
  anomaly_frames_posture_pil = [Image.fromarray(frame) for frame in anomaly_frames_posture_images]
@@ -40,6 +42,7 @@ def process_and_show_completion(video_input_path, anomaly_threshold_input, fps,
40
  face_samples_frequent,
41
  aligned_faces_folder, frames_folder,
42
  mse_embeddings, mse_posture,
 
43
  ]
44
 
45
  return output
@@ -49,14 +52,14 @@ def process_and_show_completion(video_input_path, anomaly_threshold_input, fps,
49
  print(error_message)
50
  import traceback
51
  traceback.print_exc()
52
- return [error_message] + [None] * 17
53
 
54
  with gr.Blocks() as iface:
55
  gr.Markdown("""
56
  # Multimodal Behavioral Anomalies Detection
57
 
58
- The purpose of this tool is to detect anomalies in facial expressions and body language over the timeline of a video.
59
- It extracts faces and postures from video frames, detects unique facial features and body postures, and analyzes them to identify anomalies using time series analysis, specifically utilizing a variational autoencoder (VAE) approach.
60
  """)
61
 
62
  with gr.Row():
@@ -76,8 +79,7 @@ with gr.Blocks() as iface:
76
  mse_features_hist = gr.Plot(label="MSE Distribution: Facial Features")
77
  mse_features_heatmap = gr.Plot(label="MSE Heatmap: Facial Features")
78
  anomaly_frames_features = gr.Gallery(label="Anomaly Frames (Facial Features)", columns=6, rows=2, height="auto")
79
- face_samples_most_frequent = gr.Gallery(label="Other Samples", columns=10, rows=2, height="auto")
80
- #face_samples_others = gr.Gallery(label="Other Samples", columns=6, rows=1, height="auto")
81
 
82
  with gr.Tab("Body Posture"):
83
  mse_posture_plot = gr.Plot(label="MSE: Body Posture")
@@ -91,7 +93,6 @@ with gr.Blocks() as iface:
91
  mse_voice_heatmap = gr.Plot(label="MSE Heatmap: Voice")
92
  anomaly_segments_voice = gr.Audio(label="Anomaly Voice Segments", type="filepath")
93
 
94
-
95
  df_store = gr.State()
96
  mse_features_store = gr.State()
97
  mse_posture_store = gr.State()
@@ -109,11 +110,11 @@ with gr.Blocks() as iface:
109
  mse_features_plot, mse_posture_plot,
110
  mse_features_hist, mse_posture_hist,
111
  mse_features_heatmap, mse_posture_heatmap,
112
- mse_voice_plot, mse_voice_hist, mse_voice_heatmap, anomaly_segments_voice,
113
  anomaly_frames_features, anomaly_frames_posture,
114
  face_samples_most_frequent,
115
  aligned_faces_folder_store, frames_folder_store,
116
- mse_heatmap_embeddings_store, mse_heatmap_posture_store
 
117
  ]
118
  ).then(
119
  lambda: gr.Group(visible=True),
 
15
 
16
  if isinstance(results[0], str) and results[0].startswith("Error"):
17
  print(f"Error occurred: {results[0]}")
18
+ return [results[0]] + [None] * 21 # Adjust this number based on your total outputs
19
+
20
+ (exec_time, results_summary, df, mse_embeddings, mse_posture,
21
+ mse_plot_embeddings, mse_histogram_embeddings,
22
+ mse_plot_posture, mse_histogram_posture,
23
+ mse_heatmap_embeddings, mse_heatmap_posture,
24
+ face_samples_frequent,
25
+ anomaly_faces_embeddings, anomaly_frames_posture_images,
26
+ aligned_faces_folder, frames_folder,
27
+ mse_voice, mse_plot_voice, mse_histogram_voice, mse_heatmap_voice,
28
+ anomaly_segments_voice) = results
29
 
30
  anomaly_faces_embeddings_pil = [Image.fromarray(face) for face in anomaly_faces_embeddings]
31
  anomaly_frames_posture_pil = [Image.fromarray(frame) for frame in anomaly_frames_posture_images]
 
42
  face_samples_frequent,
43
  aligned_faces_folder, frames_folder,
44
  mse_embeddings, mse_posture,
45
+ mse_plot_voice, mse_histogram_voice, mse_heatmap_voice, anomaly_segments_voice
46
  ]
47
 
48
  return output
 
52
  print(error_message)
53
  import traceback
54
  traceback.print_exc()
55
+ return [error_message] + [None] * 21 # Adjust this number based on your total outputs
56
 
57
  with gr.Blocks() as iface:
58
  gr.Markdown("""
59
  # Multimodal Behavioral Anomalies Detection
60
 
61
+ This tool detects anomalies in facial expressions, body language, and voice over the timeline of a video.
62
+ It extracts faces, postures, and voice features from video frames, and analyzes them to identify anomalies using time series analysis and a variational autoencoder (VAE) approach.
63
  """)
64
 
65
  with gr.Row():
 
79
  mse_features_hist = gr.Plot(label="MSE Distribution: Facial Features")
80
  mse_features_heatmap = gr.Plot(label="MSE Heatmap: Facial Features")
81
  anomaly_frames_features = gr.Gallery(label="Anomaly Frames (Facial Features)", columns=6, rows=2, height="auto")
82
+ face_samples_most_frequent = gr.Gallery(label="Most Frequent Person Samples", columns=10, rows=2, height="auto")
 
83
 
84
  with gr.Tab("Body Posture"):
85
  mse_posture_plot = gr.Plot(label="MSE: Body Posture")
 
93
  mse_voice_heatmap = gr.Plot(label="MSE Heatmap: Voice")
94
  anomaly_segments_voice = gr.Audio(label="Anomaly Voice Segments", type="filepath")
95
 
 
96
  df_store = gr.State()
97
  mse_features_store = gr.State()
98
  mse_posture_store = gr.State()
 
110
  mse_features_plot, mse_posture_plot,
111
  mse_features_hist, mse_posture_hist,
112
  mse_features_heatmap, mse_posture_heatmap,
 
113
  anomaly_frames_features, anomaly_frames_posture,
114
  face_samples_most_frequent,
115
  aligned_faces_folder_store, frames_folder_store,
116
+ mse_heatmap_embeddings_store, mse_heatmap_posture_store,
117
+ mse_voice_plot, mse_voice_hist, mse_voice_heatmap, anomaly_segments_voice
118
  ]
119
  ).then(
120
  lambda: gr.Group(visible=True),