File size: 8,069 Bytes
03d9d99
b576153
 
 
 
 
10c6916
b576153
 
 
10c6916
 
 
 
5edecda
10c6916
 
 
9a042e3
10c6916
b576153
 
 
 
5edecda
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b576153
 
 
 
10c6916
 
 
 
b576153
10c6916
b576153
 
 
 
 
5edecda
 
 
 
 
 
 
10c6916
5edecda
 
 
 
 
8e3d89c
 
10c6916
4516b32
 
 
 
b576153
10c6916
 
 
b576153
10c6916
 
b576153
 
10c6916
5edecda
 
b576153
 
10c6916
2d4b661
b576153
 
 
10c6916
 
9a042e3
10c6916
 
 
b576153
 
 
 
 
 
 
 
 
 
 
5edecda
 
b576153
 
 
 
 
5edecda
b576153
5edecda
b576153
5edecda
b576153
10c6916
b576153
 
 
 
 
 
 
 
5edecda
 
10c6916
b576153
 
5edecda
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b576153
5edecda
b576153
5edecda
 
8d79bf5
dbff27c
 
 
 
 
 
 
 
 
 
 
a5e0d40
 
 
 
dbff27c
 
5006f20
a5e0d40
 
 
2f31df1
f68dffc
5edecda
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5006f20
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
import streamlit as st
import os
import requests
import pickle
import pandas as pd
import nltk
import spacy
from nltk.corpus import stopwords
from nltk.tokenize import word_tokenize, sent_tokenize
import numpy as np
############
from nltk.stem import WordNetLemmatizer
from nltk import ne_chunk, pos_tag, word_tokenize
from nltk.tree import Tree
from sklearn.feature_extraction.text import CountVectorizer, TfidfVectorizer
nltk.download('wordnet')
nltk.download('maxent_ne_chunker')
nltk.download('words')

#######
nltk.download('punkt')
nltk.download('stopwords')
nltk.download('averaged_perceptron_tagger')


#title 
st.title("Smart Detection System of AI-Generated Text Models")

#subtitle 
st.markdown("This is a POC for Smart Detection System of AI Generated Text Models project (:blue[MSc Data Analytics]), it is a pre-trained model that detect the probablities of using any of the known LLM (chatgpt3, chatgpt4, GoogleBard, HuggingfaceChat)")

#input text 
input_paragraph = st.text_area("Input your text here")
words_counts = word_tokenize(input_paragraph)
final_words = len(words_counts)
st.write('Words counts: ', final_words)

# Define your options
options = ["AI vs AI - RandomForest - 88 Samples", "AI vs AI - Ridge - 2000 Samples", "AI vs Human"]

# Create a dropdown menu with "Option 2" as the default
# selected_option = st.selectbox('Select an Option', options, index=1)
selected_option = st.selectbox('Select an Option', options)


# Check if the file exists
if not os.path.isfile('RandomForestClassifier.pkl'):
    # Download the zip file if it doesn't exist
    url = 'https://jaifar.net/RandomForestClassifier.pkl'
    headers = {
    'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/58.0.3029.110 Safari/537.3',
    }

    response = requests.get(url, headers=headers)

    # Save the file
    with open('RandomForestClassifier.pkl', 'wb') as file:
        file.write(response.content)


# Check if the file exists
if not os.path.isfile('AI_vs_AI_Ridge_2000_Samples.pkl'):
    # Download the zip file if it doesn't exist
    url = 'https://jaifar.net/AI_vs_AI_Ridge_2000_Samples.pkl'
    headers = {
    'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/58.0.3029.110 Safari/537.3',
    }

    response = requests.get(url, headers=headers)

    # Save the file
    with open('AI_vs_AI_Ridge_2000_Samples.pkl', 'wb') as file:
        file.write(response.content)



# df = pd.DataFrame(columns=["paragraph"])
# df = df.append({"paragraph": input_paragraph}, ignore_index=True)

df = pd.DataFrame([input_paragraph], columns=["paragraph"])



# Variable to control number of words to retrieve
num_words = 500

# Retrieving only the first num_words words of the paragraph
input_paragraph = ' '.join(word_tokenize(input_paragraph)[:num_words])

# Extracting features
def extract_features_AI_vs_AI_Ridge_2000_Samples(text):
    
    words = word_tokenize(text)
    sentences = sent_tokenize(text)

    avg_word_length = sum(len(word) for word in words if word.isalpha()) / len(words)
    avg_sent_length = sum(len(sent) for sent in sentences) / len(sentences)
    punctuation_count = len([char for char in text if char in '.,;:?!'])
    stopword_count = len([word for word in words if word in stopwords.words('english')])

    lemmatizer = WordNetLemmatizer()
    lemma_count = len(set(lemmatizer.lemmatize(word) for word in words))

    named_entity_count = len([chunk for chunk in ne_chunk(pos_tag(words)) if isinstance(chunk, Tree)])

    tagged_words = nltk.pos_tag(words)
    pos_counts = nltk.FreqDist(tag for (word, tag) in tagged_words)
    pos_features = {
        'pos_IN': pos_counts['IN'],
        'pos_DT': pos_counts['DT'],
        'pos_NN': pos_counts['NN'],
        'pos_,': pos_counts[','],
        'pos_VBZ': pos_counts['VBZ'],
        'pos_WDT': pos_counts['WDT'],
        'pos_TO': pos_counts['TO'],
        'pos_VB': pos_counts['VB'],
        'pos_PRP': pos_counts['PRP'],
        'pos_VBP': pos_counts['VBP'],
        'pos_VBG': pos_counts['VBG'],
        'pos_.': pos_counts['.'],
        'pos_JJ': pos_counts['JJ'],
        'pos_NNS': pos_counts['NNS'],
        'pos_RB': pos_counts['RB'],
        'pos_PRP$': pos_counts['PRP$'],
        'pos_CC': pos_counts['CC'],
        'pos_MD': pos_counts['MD'],
        'pos_VBN': pos_counts['VBN'],
        'pos_NNP': pos_counts['NNP'],
    }

    features = {
        'avg_word_length': avg_word_length,
        'avg_sent_length': avg_sent_length,
        'punctuation_count': punctuation_count,
        'stopword_count': stopword_count,
        'lemma_count': lemma_count,
        'named_entity_count': named_entity_count,
    }
    # features.update(pos_features)
    features = pd.concat([features, pd.DataFrame(pos_features, index=[0])], axis=1)

    return pd.Series(features)

# Function from Code(2)
def add_vectorized_features(df):
    vectorizer = CountVectorizer()
    tfidf_vectorizer = TfidfVectorizer()
    X_bow = vectorizer.fit_transform(df['paragraph'])
    X_tfidf = tfidf_vectorizer.fit_transform(df['paragraph'])
    df_bow = pd.DataFrame(X_bow.toarray(), columns=vectorizer.get_feature_names_out())
    df_tfidf = pd.DataFrame(X_tfidf.toarray(), columns=tfidf_vectorizer.get_feature_names_out())
    df = pd.concat([df, df_bow, df_tfidf], axis=1)
    return df


# Function define 
def AI_vs_AI_RandomForest_88_Samples(df):
    
    # At this point, the pickle file should exist, either it was already there, or it has been downloaded and extracted.
    with open('RandomForestClassifier.pkl', 'rb') as file:
        clf_loaded = pickle.load(file)
    
    input_features = df['paragraph'].apply(extract_features)

    predicted_llm = clf_loaded.predict(input_features)
    st.write(f"Predicted LLM: {predicted_llm[0]}")


    predicted_proba = clf_loaded.predict_proba(input_features)
    probabilities = predicted_proba[0]
    labels = clf_loaded.classes_

    # Create a mapping from old labels to new labels
    label_mapping = {1: 'gpt3', 2: 'gpt4', 3: 'googlebard', 4: 'huggingface'}

    # Apply the mapping to the labels
    new_labels = [label_mapping[label] for label in labels]

    # Create a dictionary that maps new labels to probabilities
    prob_dict = {k: v for k, v in zip(new_labels, probabilities)}

    # Convert probabilities to percentages and sort the dictionary in descending order
    prob_dict = {k: f'{v*100:.2f}%' for k, v in sorted(prob_dict.items(), key=lambda item: item[1], reverse=True)}

    # Print the dictionary
    #st.write(prob_dict)

    # Create a progress bar and a bar chart for each LLM
    for llm, prob in prob_dict.items():
        st.write(llm + ': ' + prob)
        st.progress(float(prob.strip('%'))/100)
    return 

def AI_vs_AI_Ridge_2000_Samples(df):

    # At this point, the pickle file should exist, either it was already there, or it has been downloaded and extracted.
    with open('AI_vs_AI_Ridge_2000_Samples.pkl', 'rb') as file:
        clf_loaded = pickle.load(file)

    
    input_features = df['paragraph'].apply(extract_features_AI_vs_AI_Ridge_2000_Samples)

    # Here, input_features is a DataFrame, not a Series
    input_features = pd.concat(input_features.values, ignore_index=True)

    # Add new vectorized features
    df = add_vectorized_features(df)

    # Concatenate input_features and df along columns
    final_features = pd.concat([input_features, df], axis=1)

    predicted_llm = clf_loaded.predict(final_features)
    st.write(f"Predicted LLM: {predicted_llm[0]}")

    return


# Creates a button named 'Press me'
press_me_button = st.button("Which Model Used?")

if press_me_button:
    
    # Use the selected option to control the flow of your application
    if selected_option == "AI vs AI - RandomForest - 88 Samples":
        AI_vs_AI_RandomForest_88_Samples(df)

    elif selected_option == "AI vs AI - Ridge - 2000 Samples":
        AI_vs_AI_Ridge_2000_Samples(df)

    elif selected_option == "AI vs Human":
        st.write("You selected AI vs Human!")