Spaces:
Running
Running
File size: 8,069 Bytes
03d9d99 b576153 10c6916 b576153 10c6916 5edecda 10c6916 9a042e3 10c6916 b576153 5edecda b576153 10c6916 b576153 10c6916 b576153 5edecda 10c6916 5edecda 8e3d89c 10c6916 4516b32 b576153 10c6916 b576153 10c6916 b576153 10c6916 5edecda b576153 10c6916 2d4b661 b576153 10c6916 9a042e3 10c6916 b576153 5edecda b576153 5edecda b576153 5edecda b576153 5edecda b576153 10c6916 b576153 5edecda 10c6916 b576153 5edecda b576153 5edecda b576153 5edecda 8d79bf5 dbff27c a5e0d40 dbff27c 5006f20 a5e0d40 2f31df1 f68dffc 5edecda 5006f20 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 |
import streamlit as st
import os
import requests
import pickle
import pandas as pd
import nltk
import spacy
from nltk.corpus import stopwords
from nltk.tokenize import word_tokenize, sent_tokenize
import numpy as np
############
from nltk.stem import WordNetLemmatizer
from nltk import ne_chunk, pos_tag, word_tokenize
from nltk.tree import Tree
from sklearn.feature_extraction.text import CountVectorizer, TfidfVectorizer
nltk.download('wordnet')
nltk.download('maxent_ne_chunker')
nltk.download('words')
#######
nltk.download('punkt')
nltk.download('stopwords')
nltk.download('averaged_perceptron_tagger')
#title
st.title("Smart Detection System of AI-Generated Text Models")
#subtitle
st.markdown("This is a POC for Smart Detection System of AI Generated Text Models project (:blue[MSc Data Analytics]), it is a pre-trained model that detect the probablities of using any of the known LLM (chatgpt3, chatgpt4, GoogleBard, HuggingfaceChat)")
#input text
input_paragraph = st.text_area("Input your text here")
words_counts = word_tokenize(input_paragraph)
final_words = len(words_counts)
st.write('Words counts: ', final_words)
# Define your options
options = ["AI vs AI - RandomForest - 88 Samples", "AI vs AI - Ridge - 2000 Samples", "AI vs Human"]
# Create a dropdown menu with "Option 2" as the default
# selected_option = st.selectbox('Select an Option', options, index=1)
selected_option = st.selectbox('Select an Option', options)
# Check if the file exists
if not os.path.isfile('RandomForestClassifier.pkl'):
# Download the zip file if it doesn't exist
url = 'https://jaifar.net/RandomForestClassifier.pkl'
headers = {
'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/58.0.3029.110 Safari/537.3',
}
response = requests.get(url, headers=headers)
# Save the file
with open('RandomForestClassifier.pkl', 'wb') as file:
file.write(response.content)
# Check if the file exists
if not os.path.isfile('AI_vs_AI_Ridge_2000_Samples.pkl'):
# Download the zip file if it doesn't exist
url = 'https://jaifar.net/AI_vs_AI_Ridge_2000_Samples.pkl'
headers = {
'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/58.0.3029.110 Safari/537.3',
}
response = requests.get(url, headers=headers)
# Save the file
with open('AI_vs_AI_Ridge_2000_Samples.pkl', 'wb') as file:
file.write(response.content)
# df = pd.DataFrame(columns=["paragraph"])
# df = df.append({"paragraph": input_paragraph}, ignore_index=True)
df = pd.DataFrame([input_paragraph], columns=["paragraph"])
# Variable to control number of words to retrieve
num_words = 500
# Retrieving only the first num_words words of the paragraph
input_paragraph = ' '.join(word_tokenize(input_paragraph)[:num_words])
# Extracting features
def extract_features_AI_vs_AI_Ridge_2000_Samples(text):
words = word_tokenize(text)
sentences = sent_tokenize(text)
avg_word_length = sum(len(word) for word in words if word.isalpha()) / len(words)
avg_sent_length = sum(len(sent) for sent in sentences) / len(sentences)
punctuation_count = len([char for char in text if char in '.,;:?!'])
stopword_count = len([word for word in words if word in stopwords.words('english')])
lemmatizer = WordNetLemmatizer()
lemma_count = len(set(lemmatizer.lemmatize(word) for word in words))
named_entity_count = len([chunk for chunk in ne_chunk(pos_tag(words)) if isinstance(chunk, Tree)])
tagged_words = nltk.pos_tag(words)
pos_counts = nltk.FreqDist(tag for (word, tag) in tagged_words)
pos_features = {
'pos_IN': pos_counts['IN'],
'pos_DT': pos_counts['DT'],
'pos_NN': pos_counts['NN'],
'pos_,': pos_counts[','],
'pos_VBZ': pos_counts['VBZ'],
'pos_WDT': pos_counts['WDT'],
'pos_TO': pos_counts['TO'],
'pos_VB': pos_counts['VB'],
'pos_PRP': pos_counts['PRP'],
'pos_VBP': pos_counts['VBP'],
'pos_VBG': pos_counts['VBG'],
'pos_.': pos_counts['.'],
'pos_JJ': pos_counts['JJ'],
'pos_NNS': pos_counts['NNS'],
'pos_RB': pos_counts['RB'],
'pos_PRP$': pos_counts['PRP$'],
'pos_CC': pos_counts['CC'],
'pos_MD': pos_counts['MD'],
'pos_VBN': pos_counts['VBN'],
'pos_NNP': pos_counts['NNP'],
}
features = {
'avg_word_length': avg_word_length,
'avg_sent_length': avg_sent_length,
'punctuation_count': punctuation_count,
'stopword_count': stopword_count,
'lemma_count': lemma_count,
'named_entity_count': named_entity_count,
}
# features.update(pos_features)
features = pd.concat([features, pd.DataFrame(pos_features, index=[0])], axis=1)
return pd.Series(features)
# Function from Code(2)
def add_vectorized_features(df):
vectorizer = CountVectorizer()
tfidf_vectorizer = TfidfVectorizer()
X_bow = vectorizer.fit_transform(df['paragraph'])
X_tfidf = tfidf_vectorizer.fit_transform(df['paragraph'])
df_bow = pd.DataFrame(X_bow.toarray(), columns=vectorizer.get_feature_names_out())
df_tfidf = pd.DataFrame(X_tfidf.toarray(), columns=tfidf_vectorizer.get_feature_names_out())
df = pd.concat([df, df_bow, df_tfidf], axis=1)
return df
# Function define
def AI_vs_AI_RandomForest_88_Samples(df):
# At this point, the pickle file should exist, either it was already there, or it has been downloaded and extracted.
with open('RandomForestClassifier.pkl', 'rb') as file:
clf_loaded = pickle.load(file)
input_features = df['paragraph'].apply(extract_features)
predicted_llm = clf_loaded.predict(input_features)
st.write(f"Predicted LLM: {predicted_llm[0]}")
predicted_proba = clf_loaded.predict_proba(input_features)
probabilities = predicted_proba[0]
labels = clf_loaded.classes_
# Create a mapping from old labels to new labels
label_mapping = {1: 'gpt3', 2: 'gpt4', 3: 'googlebard', 4: 'huggingface'}
# Apply the mapping to the labels
new_labels = [label_mapping[label] for label in labels]
# Create a dictionary that maps new labels to probabilities
prob_dict = {k: v for k, v in zip(new_labels, probabilities)}
# Convert probabilities to percentages and sort the dictionary in descending order
prob_dict = {k: f'{v*100:.2f}%' for k, v in sorted(prob_dict.items(), key=lambda item: item[1], reverse=True)}
# Print the dictionary
#st.write(prob_dict)
# Create a progress bar and a bar chart for each LLM
for llm, prob in prob_dict.items():
st.write(llm + ': ' + prob)
st.progress(float(prob.strip('%'))/100)
return
def AI_vs_AI_Ridge_2000_Samples(df):
# At this point, the pickle file should exist, either it was already there, or it has been downloaded and extracted.
with open('AI_vs_AI_Ridge_2000_Samples.pkl', 'rb') as file:
clf_loaded = pickle.load(file)
input_features = df['paragraph'].apply(extract_features_AI_vs_AI_Ridge_2000_Samples)
# Here, input_features is a DataFrame, not a Series
input_features = pd.concat(input_features.values, ignore_index=True)
# Add new vectorized features
df = add_vectorized_features(df)
# Concatenate input_features and df along columns
final_features = pd.concat([input_features, df], axis=1)
predicted_llm = clf_loaded.predict(final_features)
st.write(f"Predicted LLM: {predicted_llm[0]}")
return
# Creates a button named 'Press me'
press_me_button = st.button("Which Model Used?")
if press_me_button:
# Use the selected option to control the flow of your application
if selected_option == "AI vs AI - RandomForest - 88 Samples":
AI_vs_AI_RandomForest_88_Samples(df)
elif selected_option == "AI vs AI - Ridge - 2000 Samples":
AI_vs_AI_Ridge_2000_Samples(df)
elif selected_option == "AI vs Human":
st.write("You selected AI vs Human!")
|