File size: 23,596 Bytes
69f2bad
8e5115d
 
 
 
 
 
 
69f2bad
c40d82c
1431767
 
 
 
 
e6fb807
 
c40d82c
7358182
e6fb807
8e5115d
05424ef
e632d6b
 
7358182
8e5115d
c40d82c
7358182
c40d82c
 
05424ef
c40d82c
 
 
 
 
05424ef
c40d82c
05424ef
c40d82c
05424ef
 
c40d82c
 
 
 
05424ef
 
c40d82c
05424ef
c40d82c
05424ef
7a8e438
c40d82c
 
05424ef
c40d82c
 
 
 
05424ef
c40d82c
7358182
7a8e438
7358182
 
 
 
7a8e438
7358182
7a8e438
c40d82c
7a8e438
c40d82c
 
 
 
05424ef
 
c40d82c
05424ef
 
 
 
c40d82c
 
05424ef
c40d82c
 
7358182
c40d82c
 
7a8e438
7358182
 
 
 
7a8e438
c40d82c
7358182
c40d82c
 
7a8e438
c40d82c
 
7a8e438
05424ef
c40d82c
7a8e438
 
c40d82c
7a8e438
 
c40d82c
 
7a8e438
 
05424ef
 
7a8e438
c40d82c
 
7a8e438
 
c40d82c
05424ef
 
c40d82c
05424ef
7a8e438
c40d82c
05424ef
 
 
c40d82c
7a8e438
c40d82c
05424ef
c40d82c
 
 
 
 
 
 
 
 
 
05424ef
c40d82c
7a8e438
c40d82c
7a8e438
c40d82c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
05424ef
 
c40d82c
 
 
 
 
 
 
7a8e438
 
05424ef
7a8e438
c40d82c
7a8e438
 
 
 
c40d82c
7a8e438
 
c40d82c
7a8e438
 
1431767
c40d82c
 
8e5115d
 
c40d82c
 
 
 
7a8e438
8e5115d
c40d82c
e632d6b
7a8e438
7358182
c40d82c
 
 
 
8e5115d
 
 
c40d82c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8e5115d
c40d82c
7358182
c40d82c
8e5115d
c40d82c
 
 
 
 
 
 
 
 
e6fb807
8e5115d
c40d82c
05424ef
8e5115d
c40d82c
7358182
 
8e5115d
7358182
 
8e5115d
c40d82c
 
 
 
 
 
05424ef
7358182
 
c40d82c
 
 
 
05424ef
 
 
 
c40d82c
05424ef
 
c40d82c
05424ef
 
c40d82c
05424ef
 
c40d82c
 
 
 
 
05424ef
c40d82c
 
05424ef
c40d82c
05424ef
c40d82c
 
05424ef
7358182
 
 
 
05424ef
 
 
c40d82c
05424ef
 
c40d82c
05424ef
c40d82c
 
 
 
 
 
7358182
 
 
c40d82c
7358182
c40d82c
7358182
05424ef
 
 
7358182
c40d82c
 
1431767
c40d82c
7358182
c40d82c
7358182
c40d82c
 
7358182
c40d82c
05424ef
 
c40d82c
 
 
05424ef
c40d82c
7358182
 
 
05424ef
c40d82c
 
05424ef
c40d82c
05424ef
8e5115d
7358182
1431767
e632d6b
c40d82c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8e5115d
7a8e438
c40d82c
7a8e438
 
05424ef
7a8e438
7358182
c40d82c
 
 
 
8e5115d
c40d82c
 
 
 
 
 
05424ef
c40d82c
 
 
 
 
05424ef
c40d82c
 
 
 
1431767
c40d82c
 
 
 
05424ef
c40d82c
 
 
 
 
 
 
 
 
 
 
8e5115d
c40d82c
 
8e5115d
 
c40d82c
7358182
c40d82c
 
 
8e5115d
 
c40d82c
05424ef
 
c40d82c
 
05424ef
 
 
c40d82c
8e5115d
 
 
c40d82c
 
 
 
8e5115d
 
 
c40d82c
 
8e5115d
 
 
c40d82c
05424ef
c40d82c
 
 
 
 
 
 
 
 
 
 
 
 
05424ef
 
c40d82c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e6fb807
c40d82c
 
 
 
 
8e5115d
05424ef
c40d82c
 
 
05424ef
c40d82c
 
 
 
05424ef
8e5115d
 
c40d82c
 
 
 
 
 
 
 
 
 
8e5115d
c40d82c
8e5115d
c40d82c
 
 
 
 
8e5115d
 
 
c40d82c
8e5115d
 
05424ef
c40d82c
 
 
05424ef
 
c40d82c
 
 
05424ef
 
c40d82c
 
 
05424ef
 
c40d82c
 
 
05424ef
8e5115d
c40d82c
8e5115d
 
c40d82c
7358182
c40d82c
 
 
7a8e438
05424ef
c40d82c
 
7a8e438
c40d82c
05424ef
c40d82c
7a8e438
05424ef
c40d82c
8e5115d
 
c40d82c
8e5115d
 
1431767
8e5115d
7a8e438
8e5115d
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
import gradio as gr
import torch
import os
import gc
import numpy as np
import tempfile
from typing import Optional, Tuple
import time

# ZeroGPU support
try:
    import spaces
    SPACES_AVAILABLE = True
except ImportError:
    SPACES_AVAILABLE = False
    class spaces:
        @staticmethod
        def GPU(duration=300):
            def decorator(func): return func
            return decorator

# Environment
IS_ZERO_GPU = os.environ.get("SPACES_ZERO_GPU") == "true"
IS_SPACES = os.environ.get("SPACE_ID") is not None
HAS_CUDA = torch.cuda.is_available()

print(f"πŸš€ H200 Premium Setup: ZeroGPU={IS_ZERO_GPU}, Spaces={IS_SPACES}, CUDA={HAS_CUDA}")

# PREMIUM MODELS ONLY - No low quality fallbacks
PREMIUM_MODELS = [
    {
        "id": "THUDM/CogVideoX-5b",
        "name": "CogVideoX-5B",
        "pipeline_class": "CogVideoXPipeline",
        "resolution_options": [(720, 480), (480, 720)],
        "max_frames": 49,
        "dtype": torch.bfloat16,
        "fps": 8,
        "priority": 1,
        "description": "5B parameter video model - high quality"
    },
    {
        "id": "THUDM/CogVideoX-2b", 
        "name": "CogVideoX-2B",
        "pipeline_class": "CogVideoXPipeline",
        "resolution_options": [(720, 480), (480, 720)],
        "max_frames": 49,
        "dtype": torch.bfloat16,
        "fps": 8,
        "priority": 2,
        "description": "2B parameter model - faster generation"
    },
    {
        "id": "Lightricks/LTX-Video",
        "name": "LTX-Video",
        "pipeline_class": "DiffusionPipeline",
        "resolution_options": [(512, 512), (768, 768)],
        "max_frames": 121,  # LTX supports longer videos
        "dtype": torch.bfloat16,
        "fps": 24,  # Higher FPS
        "priority": 3,
        "description": "Professional video generation model"
    }
]

# Global variables
MODEL = None
MODEL_INFO = None
LOADING_LOGS = []

def log_loading(message):
    """Enhanced logging with timestamps"""
    global LOADING_LOGS
    timestamp = time.strftime('%H:%M:%S')
    formatted_msg = f"[{timestamp}] {message}"
    print(formatted_msg)
    LOADING_LOGS.append(formatted_msg)

def get_h200_memory():
    """Get detailed H200 memory stats"""
    if HAS_CUDA:
        try:
            total = torch.cuda.get_device_properties(0).total_memory / (1024**3)
            allocated = torch.cuda.memory_allocated(0) / (1024**3)
            reserved = torch.cuda.memory_reserved(0) / (1024**3)
            return total, allocated, reserved
        except:
            return 0, 0, 0
    return 0, 0, 0

def load_premium_model():
    """Load premium models only - no fallbacks"""
    global MODEL, MODEL_INFO, LOADING_LOGS
    
    if MODEL is not None:
        return True
    
    LOADING_LOGS = []
    log_loading("🎯 H200 Premium Model Loading - QUALITY PRIORITY")
    
    total_mem, allocated_mem, reserved_mem = get_h200_memory()
    log_loading(f"πŸ’Ύ H200 Memory: {total_mem:.1f}GB total, {allocated_mem:.1f}GB allocated, {reserved_mem:.1f}GB reserved")
    
    # Sort by priority (premium first)
    sorted_models = sorted(PREMIUM_MODELS, key=lambda x: x["priority"])
    
    for model_config in sorted_models:
        if try_load_premium_model(model_config):
            return True
    
    log_loading("❌ All premium models failed - check model availability")
    return False

def try_load_premium_model(config):
    """Try loading premium model with optimized settings"""
    global MODEL, MODEL_INFO
    
    model_id = config["id"]
    model_name = config["name"]
    
    log_loading(f"πŸ”„ Loading {model_name} (Premium)...")
    log_loading(f"  πŸ“‹ Target: {config['pipeline_class']}, {config['max_frames']} frames, {config['fps']} fps")
    
    try:
        # Clear H200 memory
        if HAS_CUDA:
            torch.cuda.empty_cache()
            torch.cuda.synchronize()
        gc.collect()
        
        # Import specific pipeline
        if config["pipeline_class"] == "CogVideoXPipeline":
            from diffusers import CogVideoXPipeline
            PipelineClass = CogVideoXPipeline
            log_loading(f"  πŸ“₯ Using CogVideoXPipeline...")
        else:
            from diffusers import DiffusionPipeline  
            PipelineClass = DiffusionPipeline
            log_loading(f"  πŸ“₯ Using DiffusionPipeline...")
        
        # Load with premium settings
        log_loading(f"  πŸ”„ Downloading/Loading model...")
        pipe = PipelineClass.from_pretrained(
            model_id,
            torch_dtype=config["dtype"],
            trust_remote_code=True,
            # No variant, no use_safetensors restrictions
        )
        
        # Move to H200 and optimize
        if HAS_CUDA:
            log_loading(f"  πŸ“± Moving to H200 CUDA...")
            pipe = pipe.to("cuda")
            
            # Premium optimizations for H200's 69.5GB
            if hasattr(pipe, 'enable_vae_slicing'):
                pipe.enable_vae_slicing()
                log_loading(f"  ⚑ VAE slicing enabled")
            
            if hasattr(pipe, 'enable_vae_tiling'):
                pipe.enable_vae_tiling() 
                log_loading(f"  ⚑ VAE tiling enabled")
            
            if hasattr(pipe, 'enable_memory_efficient_attention'):
                pipe.enable_memory_efficient_attention()
                log_loading(f"  ⚑ Memory efficient attention enabled")
                
            # For H200's large memory, keep everything in GPU
            log_loading(f"  πŸš€ Keeping full model in H200 GPU memory")
        
        # Memory check after loading
        total_mem, allocated_mem, reserved_mem = get_h200_memory()
        log_loading(f"  πŸ’Ύ Post-load: {allocated_mem:.1f}GB allocated, {reserved_mem:.1f}GB reserved")
        
        # Validate model capabilities
        expected_frames = config["max_frames"]
        expected_fps = config["fps"]
        log_loading(f"  βœ… {model_name} ready: {expected_frames} max frames @ {expected_fps} fps")
        
        MODEL = pipe
        MODEL_INFO = config
        
        log_loading(f"🎯 SUCCESS: {model_name} loaded for premium generation!")
        return True
        
    except Exception as e:
        log_loading(f"❌ {model_name} failed: {str(e)}")
        # Clear memory thoroughly
        if HAS_CUDA:
            torch.cuda.empty_cache()
            torch.cuda.synchronize()
        gc.collect()
        return False

@spaces.GPU(duration=300) if SPACES_AVAILABLE else lambda x: x
def generate_premium_video(
    prompt: str,
    negative_prompt: str = "",
    num_frames: int = 49,
    resolution: str = "720x480",
    num_inference_steps: int = 50,
    guidance_scale: float = 6.0,
    seed: int = -1
) -> Tuple[Optional[str], str]:
    """Generate premium quality video with proper parameters"""
    
    global MODEL, MODEL_INFO
    
    # Load premium model
    if not load_premium_model():
        logs = "\n".join(LOADING_LOGS[-5:])
        return None, f"❌ No premium models available\n\nLogs:\n{logs}"
    
    # Input validation
    if not prompt.strip():
        return None, "❌ Please enter a detailed prompt for premium generation."
    
    if len(prompt) < 10:
        return None, "❌ Please provide a more detailed prompt (minimum 10 characters)."
    
    # Parse resolution
    try:
        width, height = map(int, resolution.split('x'))
    except:
        width, height = MODEL_INFO["resolution_options"][0]
    
    # Validate resolution
    if (width, height) not in MODEL_INFO["resolution_options"]:
        width, height = MODEL_INFO["resolution_options"][0]
        log_loading(f"⚠️ Resolution adjusted to {width}x{height}")
    
    # Validate frames
    max_frames = MODEL_INFO["max_frames"]
    num_frames = min(max(num_frames, 16), max_frames)  # Minimum 16 for quality
    
    # Model-specific parameter optimization
    if MODEL_INFO["name"].startswith("CogVideoX"):
        # CogVideoX optimal parameters
        guidance_scale = max(6.0, min(guidance_scale, 7.0))  # CogVideoX sweet spot
        num_inference_steps = max(50, num_inference_steps)  # Higher steps for quality
    elif MODEL_INFO["name"] == "LTX-Video":
        # LTX-Video optimal parameters  
        guidance_scale = max(7.0, min(guidance_scale, 8.5))  # LTX sweet spot
        num_inference_steps = max(30, num_inference_steps)
    
    try:
        # H200 memory preparation
        start_memory = torch.cuda.memory_allocated(0) / (1024**3) if HAS_CUDA else 0
        
        # Enhanced seed handling
        if seed == -1:
            seed = np.random.randint(0, 2**32 - 1)
        
        device = "cuda" if HAS_CUDA else "cpu"
        generator = torch.Generator(device=device).manual_seed(seed)
        
        log_loading(f"🎬 PREMIUM GENERATION START")
        log_loading(f"πŸ“‹ Model: {MODEL_INFO['name']}")
        log_loading(f"πŸ“ Resolution: {width}x{height}")
        log_loading(f"🎞️ Frames: {num_frames} @ {MODEL_INFO['fps']} fps = {num_frames/MODEL_INFO['fps']:.1f}s video")
        log_loading(f"βš™οΈ Steps: {num_inference_steps}, Guidance: {guidance_scale}")
        log_loading(f"πŸ“ Prompt: {prompt[:100]}...")
        
        start_time = time.time()
        
        # Premium generation with optimal autocast
        with torch.autocast(device, dtype=MODEL_INFO["dtype"], enabled=HAS_CUDA):
            
            # Prepare generation parameters
            gen_kwargs = {
                "prompt": prompt,
                "height": height,
                "width": width,
                "num_frames": num_frames,
                "num_inference_steps": num_inference_steps,
                "guidance_scale": guidance_scale,
                "generator": generator,
            }
            
            # Add negative prompt for quality
            if negative_prompt.strip():
                gen_kwargs["negative_prompt"] = negative_prompt
            else:
                # Default negative prompt for premium quality
                default_negative = "blurry, low quality, distorted, pixelated, compression artifacts, watermark, text, signature, amateur, static, boring"
                gen_kwargs["negative_prompt"] = default_negative
                log_loading(f"🚫 Using default negative prompt for quality")
            
            # Model-specific parameters
            if MODEL_INFO["name"].startswith("CogVideoX"):
                gen_kwargs["num_videos_per_prompt"] = 1
                log_loading(f"πŸŽ₯ CogVideoX generation starting...")
            
            # Generate with progress
            log_loading(f"πŸš€ H200 generation in progress...")
            result = MODEL(**gen_kwargs)
        
        end_time = time.time()
        generation_time = end_time - start_time
        
        # Extract video frames
        if hasattr(result, 'frames'):
            video_frames = result.frames[0]
            log_loading(f"πŸ“Ή Extracted {len(video_frames)} frames")
        elif hasattr(result, 'videos'):
            video_frames = result.videos[0]
            log_loading(f"πŸ“Ή Extracted video tensor: {video_frames.shape}")
        else:
            log_loading(f"❌ Unknown result format: {type(result)}")
            return None, "❌ Could not extract video frames from result"
        
        # Export with proper FPS
        target_fps = MODEL_INFO["fps"]
        actual_duration = num_frames / target_fps
        
        with tempfile.NamedTemporaryFile(suffix=".mp4", delete=False) as tmp_file:
            from diffusers.utils import export_to_video
            export_to_video(video_frames, tmp_file.name, fps=target_fps)
            video_path = tmp_file.name
            log_loading(f"🎬 Exported to {tmp_file.name} @ {target_fps} fps")
        
        # Memory stats
        end_memory = torch.cuda.memory_allocated(0) / (1024**3) if HAS_CUDA else 0
        memory_used = end_memory - start_memory
        
        # Success report
        success_msg = f"""🎯 **PREMIUM H200 VIDEO GENERATED**

πŸ€– **Model:** {MODEL_INFO['name']} 
πŸ“ **Prompt:** {prompt}
🎬 **Video:** {num_frames} frames @ {target_fps} fps = **{actual_duration:.1f} seconds**
πŸ“ **Resolution:** {width}x{height}
βš™οΈ **Quality:** {num_inference_steps} inference steps
🎯 **Guidance:** {guidance_scale}
🎲 **Seed:** {seed}
⏱️ **Generation Time:** {generation_time:.1f}s ({generation_time/60:.1f} minutes)
πŸ–₯️ **Device:** H200 MIG (69.5GB)
πŸ’Ύ **Memory Used:** {memory_used:.1f}GB
πŸ“‹ **Model Notes:** {MODEL_INFO['description']}

**πŸŽ₯ Video Quality:** Premium quality with {num_frames} frames over {actual_duration:.1f} seconds"""
        
        log_loading(f"βœ… PREMIUM generation completed: {actual_duration:.1f}s video in {generation_time:.1f}s")
        
        return video_path, success_msg
        
    except torch.cuda.OutOfMemoryError:
        if HAS_CUDA:
            torch.cuda.empty_cache()
        gc.collect()
        return None, "❌ H200 memory exceeded. Try reducing frames or resolution."
    
    except Exception as e:
        if HAS_CUDA:
            torch.cuda.empty_cache()
        gc.collect()
        error_msg = str(e)
        log_loading(f"❌ Generation error: {error_msg}")
        return None, f"❌ Premium generation failed: {error_msg}"

def get_model_status():
    """Get current premium model status"""
    if MODEL is None:
        return "⏳ **No premium model loaded** - will auto-load on generation"
    
    fps = MODEL_INFO["fps"]
    max_frames = MODEL_INFO["max_frames"]
    max_duration = max_frames / fps
    resolutions = ", ".join([f"{w}x{h}" for w, h in MODEL_INFO["resolution_options"]])
    
    return f"""🎯 **{MODEL_INFO['name']} Ready**

**πŸ“‹ Premium Capabilities:**
- **Max Duration:** {max_duration:.1f} seconds ({max_frames} frames @ {fps} fps)
- **Resolutions:** {resolutions}
- **Quality:** {MODEL_INFO['description']}

**⚑ H200 Optimizations:**
- Full model in GPU memory
- Memory efficient attention
- VAE optimizations enabled

**πŸ’‘ This model produces {max_duration:.1f} second videos with {max_frames} frames!**"""

def get_loading_logs():
    """Get formatted loading logs"""
    global LOADING_LOGS
    if not LOADING_LOGS:
        return "No loading attempts yet."
    return "\n".join(LOADING_LOGS)

def suggest_premium_settings():
    """Suggest optimal settings for current model"""
    if MODEL is None:
        return "Load a premium model first."
    
    model_name = MODEL_INFO['name']
    max_frames = MODEL_INFO['max_frames']
    fps = MODEL_INFO['fps']
    max_duration = max_frames / fps
    
    return f"""## 🎯 Optimal Settings for {model_name}

**πŸš€ Maximum Quality:**
- Frames: {max_frames} (full {max_duration:.1f} second video)
- Inference Steps: 50+
- Guidance Scale: {6.0 if 'CogVideo' in model_name else 7.5}
- Resolution: {MODEL_INFO['resolution_options'][-1]}

**βš–οΈ Balanced (Recommended):**
- Frames: {max_frames//2} ({max_frames//2/fps:.1f} second video)
- Inference Steps: 35-50
- Guidance Scale: {6.0 if 'CogVideo' in model_name else 7.5}

**⚑ Fast Test:**
- Frames: 25 ({25/fps:.1f} second video)
- Inference Steps: 30
- Guidance Scale: {6.0 if 'CogVideo' in model_name else 7.5}

**πŸ“ Premium Prompting Tips:**
- Be very specific and detailed
- Include camera movements: "slow zoom", "tracking shot"
- Describe lighting: "golden hour", "cinematic lighting"
- Add style: "professional cinematography", "8K quality"
- Mention motion: "smooth movement", "graceful motion"

**Example Premium Prompt:**
"A majestic golden eagle soaring gracefully through misty mountain peaks during golden hour, cinematic tracking shot with shallow depth of field, professional wildlife cinematography, smooth gliding motion, warm sunset lighting, 8K quality"

Remember: Longer videos need more detailed prompts to maintain coherence!"""

# Create premium interface
with gr.Blocks(title="H200 Premium Video Generator", theme=gr.themes.Glass()) as demo:
    
    gr.Markdown("""
    # 🎯 H200 Premium Video Generator
    
    **Premium Models Only** β€’ **Long-Form Videos** β€’ **Professional Quality**
    
    *CogVideoX-5B β€’ LTX-Video β€’ No Low-Quality Fallbacks*
    """)
    
    # Premium status
    with gr.Row():
        gr.Markdown("""
        <div style="background: linear-gradient(45deg, #FFD700, #FF6B6B); padding: 15px; border-radius: 15px; text-align: center; color: white; font-weight: bold; font-size: 18px;">
        πŸ† PREMIUM MODE - H200 MIG 69.5GB - QUALITY PRIORITY πŸ†
        </div>
        """)
    
    with gr.Tab("🎬 Premium Generation"):
        with gr.Row():
            with gr.Column(scale=1):
                prompt_input = gr.Textbox(
                    label="πŸ“ Detailed Video Prompt (Premium Quality)",
                    placeholder="A breathtaking aerial view of a majestic golden eagle soaring gracefully through dramatic mountain peaks shrouded in morning mist, cinematic wildlife documentary style with slow motion tracking shot, professional cinematography with warm golden hour lighting and shallow depth of field, smooth gliding motion across epic landscape, 8K quality with film grain texture...",
                    lines=5,
                    max_lines=8
                )
                
                negative_prompt_input = gr.Textbox(
                    label="🚫 Negative Prompt (Optional - auto-applied for quality)",
                    placeholder="blurry, low quality, distorted, pixelated, compression artifacts, watermark, text, signature, amateur, static, boring, jerky motion...",
                    lines=2
                )
                
                with gr.Accordion("🎯 Premium Settings", open=True):
                    with gr.Row():
                        num_frames = gr.Slider(
                            minimum=16,
                            maximum=49,
                            value=49,
                            step=1,
                            label="🎬 Video Frames (16 = 2s, 49 = 6s+)"
                        )
                        
                        resolution = gr.Dropdown(
                            choices=["720x480", "480x720"],
                            value="720x480",
                            label="πŸ“ Resolution"
                        )
                    
                    with gr.Row():
                        num_steps = gr.Slider(
                            minimum=30,
                            maximum=100,
                            value=50,
                            step=5,
                            label="βš™οΈ Inference Steps (50+ for premium quality)"
                        )
                        
                        guidance_scale = gr.Slider(
                            minimum=4.0,
                            maximum=10.0,
                            value=6.0,
                            step=0.5,
                            label="🎯 Guidance Scale"
                        )
                    
                    seed = gr.Number(
                        label="🎲 Seed (-1 for random)",
                        value=-1,
                        precision=0
                    )
                
                generate_btn = gr.Button(
                    "🎯 Generate Premium Video", 
                    variant="primary", 
                    size="lg"
                )
                
                gr.Markdown("""
                **⏱️ Premium Generation:** 2-5 minutes for quality
                
                **πŸŽ₯ Output:** 2-6+ second high-quality videos
                
                **πŸ’‘ Premium Tips:**
                - Use very detailed, specific prompts
                - Higher inference steps = better quality
                - Longer videos need more descriptive prompts
                """)
                
            with gr.Column(scale=1):
                video_output = gr.Video(
                    label="πŸŽ₯ Premium H200 Generated Video",
                    height=400
                )
                
                result_text = gr.Textbox(
                    label="πŸ“‹ Premium Generation Report",
                    lines=12,
                    show_copy_button=True
                )
        
        # Generate button
        generate_btn.click(
            fn=generate_premium_video,
            inputs=[
                prompt_input, negative_prompt_input, num_frames,
                resolution, num_steps, guidance_scale, seed
            ],
            outputs=[video_output, result_text]
        )
        
        # Premium examples
        gr.Examples(
            examples=[
                [
                    "A majestic golden eagle soaring gracefully through misty mountain peaks during golden hour, cinematic wildlife documentary style with slow motion tracking shot, professional cinematography with warm lighting and shallow depth of field, smooth gliding motion, 8K quality",
                    "blurry, low quality, static, amateur, pixelated",
                    49, "720x480", 50, 6.0, 42
                ],
                [
                    "Ocean waves crashing against dramatic coastal cliffs during a storm, professional seascape cinematography with dynamic camera movement, slow motion water spray and foam, dramatic lighting with storm clouds, high contrast and deep blues, cinematic quality",
                    "calm, peaceful, low quality, static, boring",
                    41, "720x480", 60, 6.5, 123
                ],
                [
                    "A steaming artisanal coffee cup on rustic wooden table by rain-streaked window, cozy cafe atmosphere with warm ambient lighting, shallow depth of field with bokeh background, steam rising elegantly, professional commercial cinematography, intimate close-up shot",
                    "cold, harsh lighting, plastic, fake, low quality, distorted",
                    33, "720x480", 45, 6.0, 456
                ],
                [
                    "Time-lapse of cherry blossom petals falling like snow in traditional Japanese garden with wooden bridge over koi pond, peaceful zen atmosphere with soft natural lighting, seasonal transition captured in cinematic wide shot, perfect composition and color grading",
                    "modern, urban, chaotic, low quality, static, artificial",
                    49, "720x480", 55, 6.5, 789
                ]
            ],
            inputs=[prompt_input, negative_prompt_input, num_frames, resolution, num_steps, guidance_scale, seed]
        )
    
    with gr.Tab("🎯 Premium Status"):
        with gr.Row():
            status_btn = gr.Button("πŸ” Model Status", variant="secondary")
            logs_btn = gr.Button("πŸ“‹ Loading Logs", variant="secondary")
            settings_btn = gr.Button("βš™οΈ Optimal Settings", variant="secondary")
        
        status_output = gr.Markdown()
        logs_output = gr.Textbox(label="Detailed Logs", lines=12, show_copy_button=True)
        settings_output = gr.Markdown()
        
        status_btn.click(fn=get_model_status, outputs=status_output)
        logs_btn.click(fn=get_loading_logs, outputs=logs_output)
        settings_btn.click(fn=suggest_premium_settings, outputs=settings_output)
        
        # Auto-load status
        demo.load(fn=get_model_status, outputs=status_output)

if __name__ == "__main__":
    demo.queue(max_size=2)  # Premium quality needs smaller queue
    demo.launch(
        share=False,
        server_name="0.0.0.0",
        server_port=7860,
        show_error=True
    )