Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -6,12 +6,14 @@ import numpy as np
|
|
6 |
import tempfile
|
7 |
from typing import Optional, Tuple
|
8 |
import time
|
|
|
|
|
9 |
|
10 |
-
# ZeroGPU with H200
|
11 |
try:
|
12 |
import spaces
|
13 |
SPACES_AVAILABLE = True
|
14 |
-
print("β
Spaces library loaded - H200
|
15 |
except ImportError:
|
16 |
SPACES_AVAILABLE = False
|
17 |
class spaces:
|
@@ -20,222 +22,279 @@ except ImportError:
|
|
20 |
def decorator(func): return func
|
21 |
return decorator
|
22 |
|
23 |
-
# Environment
|
24 |
IS_ZERO_GPU = os.environ.get("SPACES_ZERO_GPU") == "true"
|
25 |
IS_SPACES = os.environ.get("SPACE_ID") is not None
|
26 |
HAS_CUDA = torch.cuda.is_available()
|
27 |
|
28 |
-
print(f"π
|
29 |
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
"
|
34 |
-
"
|
35 |
-
"
|
36 |
-
|
37 |
-
"
|
38 |
-
|
39 |
-
|
40 |
-
"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
41 |
},
|
42 |
-
|
43 |
-
"id": "
|
44 |
-
"name": "
|
45 |
-
"
|
46 |
-
"
|
47 |
-
"max_frames":
|
48 |
-
"dtype": torch.
|
49 |
-
"
|
50 |
-
"description": "Tencent's advanced video model with superior motion"
|
51 |
},
|
52 |
-
|
53 |
-
"id": "
|
54 |
-
"name": "
|
55 |
-
"
|
56 |
-
"
|
57 |
-
"max_frames":
|
58 |
"dtype": torch.float16,
|
59 |
-
"
|
60 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
61 |
},
|
62 |
-
|
63 |
-
"id": "
|
64 |
-
"name": "
|
65 |
-
"
|
66 |
-
"
|
67 |
-
"
|
|
|
68 |
"dtype": torch.bfloat16,
|
69 |
-
"
|
70 |
-
"description": "CogVideo's 5B parameter model"
|
71 |
}
|
72 |
-
|
73 |
|
74 |
# Global variables
|
75 |
MODEL = None
|
76 |
MODEL_INFO = None
|
77 |
-
|
78 |
|
79 |
-
def
|
80 |
-
"""
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
allocated = torch.cuda.memory_allocated(0) / (1024**3)
|
85 |
-
cached = torch.cuda.memory_reserved(0) / (1024**3)
|
86 |
-
return total_memory, allocated, cached
|
87 |
-
except:
|
88 |
-
return 0, 0, 0
|
89 |
-
return 0, 0, 0
|
90 |
|
91 |
-
def
|
92 |
-
"""Load
|
93 |
-
global MODEL, MODEL_INFO,
|
94 |
|
95 |
if MODEL is not None:
|
96 |
return True
|
97 |
|
98 |
-
|
99 |
-
|
100 |
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
110 |
try:
|
111 |
-
|
|
|
|
|
112 |
from diffusers import LTXVideoPipeline
|
113 |
pipe = LTXVideoPipeline.from_pretrained(
|
114 |
-
|
115 |
-
torch_dtype=
|
116 |
use_safetensors=True,
|
117 |
variant="fp16"
|
118 |
)
|
119 |
-
elif
|
120 |
-
from diffusers import HunyuanVideoPipeline
|
121 |
pipe = HunyuanVideoPipeline.from_pretrained(
|
122 |
-
|
123 |
-
torch_dtype=
|
124 |
use_safetensors=True,
|
125 |
variant="fp16"
|
126 |
)
|
127 |
-
elif info["pipeline_class"] == "CogVideoXPipeline":
|
128 |
-
from diffusers import CogVideoXPipeline
|
129 |
-
pipe = CogVideoXPipeline.from_pretrained(
|
130 |
-
info["id"],
|
131 |
-
torch_dtype=info["dtype"],
|
132 |
-
use_safetensors=True
|
133 |
-
)
|
134 |
else:
|
135 |
-
# Generic DiffusionPipeline
|
136 |
pipe = DiffusionPipeline.from_pretrained(
|
137 |
-
|
138 |
-
torch_dtype=
|
139 |
use_safetensors=True,
|
140 |
-
variant="fp16"
|
141 |
-
trust_remote_code=True
|
142 |
)
|
143 |
-
except ImportError as e:
|
144 |
-
print(f"β οΈ Specific pipeline not available: {e}")
|
145 |
-
print("Trying generic DiffusionPipeline...")
|
146 |
-
pipe = DiffusionPipeline.from_pretrained(
|
147 |
-
info["id"],
|
148 |
-
torch_dtype=info["dtype"],
|
149 |
-
use_safetensors=True,
|
150 |
-
variant="fp16",
|
151 |
-
trust_remote_code=True
|
152 |
-
)
|
153 |
-
|
154 |
-
# H200 optimizations - we have plenty of memory!
|
155 |
-
if HAS_CUDA:
|
156 |
-
pipe = pipe.to("cuda")
|
157 |
-
print(f"π± Moved {info['name']} to H200 CUDA")
|
158 |
|
159 |
-
|
160 |
-
if hasattr(pipe, 'enable_vae_slicing'):
|
161 |
-
pipe.enable_vae_slicing()
|
162 |
-
if hasattr(pipe, 'enable_vae_tiling'):
|
163 |
-
pipe.enable_vae_tiling()
|
164 |
-
if hasattr(pipe, 'enable_memory_efficient_attention'):
|
165 |
-
pipe.enable_memory_efficient_attention()
|
166 |
-
# Don't use CPU offload on H200 - keep everything in GPU memory
|
167 |
|
168 |
-
|
169 |
-
|
170 |
-
|
171 |
-
|
172 |
-
|
173 |
-
|
174 |
-
|
175 |
-
|
176 |
-
|
177 |
-
|
178 |
-
|
179 |
-
|
180 |
-
|
181 |
-
|
182 |
-
|
183 |
-
|
184 |
-
|
185 |
-
|
186 |
-
|
187 |
-
|
188 |
-
|
189 |
-
|
190 |
-
|
191 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
192 |
|
193 |
-
@spaces.GPU(duration=
|
194 |
def generate_video(
|
195 |
prompt: str,
|
196 |
negative_prompt: str = "",
|
197 |
-
num_frames: int =
|
198 |
-
|
199 |
-
num_inference_steps: int = 30,
|
200 |
guidance_scale: float = 7.5,
|
201 |
-
seed: int = -1
|
202 |
-
fps: int = 8
|
203 |
) -> Tuple[Optional[str], str]:
|
204 |
-
"""Generate
|
205 |
|
206 |
-
global MODEL, MODEL_INFO
|
207 |
|
208 |
# Load model if needed
|
209 |
-
if not
|
210 |
-
return None, f"β No
|
211 |
|
212 |
# Input validation
|
213 |
if not prompt.strip():
|
214 |
return None, "β Please enter a valid prompt."
|
215 |
|
216 |
-
|
217 |
-
return None, "β Prompt too long. Please keep it under 1000 characters."
|
218 |
-
|
219 |
-
# Parse resolution
|
220 |
-
try:
|
221 |
-
width, height = map(int, resolution.split('x'))
|
222 |
-
except:
|
223 |
-
width, height = 1024, 1024
|
224 |
-
|
225 |
-
# Validate parameters against model capabilities
|
226 |
max_frames = MODEL_INFO["max_frames"]
|
227 |
-
|
228 |
|
229 |
-
#
|
230 |
-
|
231 |
-
# Use best supported resolution
|
232 |
-
best_res = MODEL_INFO["resolution_options"][-1] # Highest resolution
|
233 |
-
width, height = best_res
|
234 |
-
print(f"β οΈ Adjusted resolution to {width}x{height}")
|
235 |
|
236 |
try:
|
237 |
-
# H200 memory
|
238 |
-
|
|
|
|
|
239 |
|
240 |
# Set seed
|
241 |
if seed == -1:
|
@@ -244,460 +303,262 @@ def generate_video(
|
|
244 |
device = "cuda" if HAS_CUDA else "cpu"
|
245 |
generator = torch.Generator(device=device).manual_seed(seed)
|
246 |
|
247 |
-
print(f"π¬ H200 Generation: {MODEL_INFO['name']} -
|
248 |
-
print(f"π {width}x{height}, {num_frames} frames, {num_inference_steps} steps")
|
249 |
start_time = time.time()
|
250 |
|
251 |
-
# Generate with
|
252 |
with torch.autocast(device, dtype=MODEL_INFO["dtype"]):
|
253 |
-
|
254 |
-
|
255 |
-
|
256 |
-
|
257 |
-
|
258 |
-
|
259 |
-
|
260 |
-
|
261 |
-
|
262 |
-
|
263 |
-
# Add negative prompt if provided
|
264 |
-
if negative_prompt.strip():
|
265 |
-
generation_kwargs["negative_prompt"] = negative_prompt
|
266 |
-
|
267 |
-
# Model-specific parameters
|
268 |
-
if MODEL_INFO["name"] == "CogVideoX-5B":
|
269 |
-
generation_kwargs["num_videos_per_prompt"] = 1
|
270 |
-
|
271 |
-
# Generate with progress tracking
|
272 |
-
print("π Starting generation on H200...")
|
273 |
-
result = MODEL(**generation_kwargs)
|
274 |
|
275 |
end_time = time.time()
|
276 |
generation_time = end_time - start_time
|
277 |
|
278 |
-
#
|
279 |
-
|
280 |
-
video_frames = result.frames[0]
|
281 |
-
elif hasattr(result, 'videos'):
|
282 |
-
video_frames = result.videos[0]
|
283 |
-
else:
|
284 |
-
return None, "β Could not extract video frames from model output"
|
285 |
|
286 |
-
# Export with custom FPS
|
287 |
with tempfile.NamedTemporaryFile(suffix=".mp4", delete=False) as tmp_file:
|
288 |
from diffusers.utils import export_to_video
|
289 |
-
export_to_video(video_frames, tmp_file.name, fps=
|
290 |
video_path = tmp_file.name
|
291 |
|
292 |
-
#
|
293 |
-
|
294 |
-
|
|
|
295 |
|
296 |
-
success_msg = f"""β
**H200
|
297 |
|
298 |
-
|
299 |
π **Prompt:** {prompt}
|
300 |
-
π¬ **Frames:** {num_frames}
|
301 |
π **Resolution:** {width}x{height}
|
302 |
βοΈ **Inference Steps:** {num_inference_steps}
|
303 |
-
π― **Guidance
|
304 |
π² **Seed:** {seed}
|
305 |
-
β±οΈ **
|
306 |
π₯οΈ **Device:** H200 CUDA
|
307 |
-
|
308 |
-
π₯ **Video Length:** {num_frames/fps:.1f}s"""
|
309 |
|
310 |
return video_path, success_msg
|
311 |
|
312 |
-
except torch.cuda.OutOfMemoryError:
|
313 |
-
# Should be rare on H200!
|
314 |
-
torch.cuda.empty_cache()
|
315 |
-
gc.collect()
|
316 |
-
return None, "β GPU memory exceeded (rare on H200!). Try reducing parameters."
|
317 |
-
|
318 |
except Exception as e:
|
319 |
if HAS_CUDA:
|
320 |
torch.cuda.empty_cache()
|
321 |
gc.collect()
|
322 |
return None, f"β Generation failed: {str(e)}"
|
323 |
|
324 |
-
def
|
325 |
-
"""Get
|
326 |
-
|
327 |
-
return "β CUDA not available"
|
328 |
|
329 |
-
|
330 |
-
|
331 |
-
|
332 |
-
|
333 |
-
model_status = "β³ Model will load on first use"
|
334 |
-
if MODEL is not None:
|
335 |
-
model_status = f"β
{MODEL_INFO['name']} loaded and ready"
|
336 |
-
elif LOADING_ERROR:
|
337 |
-
model_status = f"β {LOADING_ERROR}"
|
338 |
-
|
339 |
-
return f"""## π H200 Status
|
340 |
-
|
341 |
-
**π₯οΈ Hardware:**
|
342 |
-
- GPU: {gpu_name}
|
343 |
-
- Total Memory: {total_mem:.1f} GB
|
344 |
-
- Allocated: {allocated:.1f} GB
|
345 |
-
- Cached: {cached:.1f} GB
|
346 |
-
- Free: {total_mem - allocated:.1f} GB
|
347 |
-
|
348 |
-
**π€ Model Status:**
|
349 |
-
{model_status}
|
350 |
-
|
351 |
-
**β‘ H200 Advantages:**
|
352 |
-
- 141GB HBM3 memory (3.5x more than A100)
|
353 |
-
- 4.8TB/s memory bandwidth
|
354 |
-
- Can handle larger models & longer videos
|
355 |
-
- Multiple high-res generations without swapping"""
|
356 |
-
|
357 |
-
except Exception as e:
|
358 |
-
return f"β Error getting H200 status: {e}"
|
359 |
|
360 |
-
def
|
361 |
-
"""
|
362 |
-
if MODEL is None:
|
363 |
-
return "Load a model first to get personalized recommendations"
|
364 |
|
365 |
-
|
366 |
-
max_frames = MODEL_INFO['max_frames']
|
367 |
-
max_res = MODEL_INFO['resolution_options'][-1]
|
368 |
|
369 |
-
|
370 |
-
|
371 |
-
|
372 |
-
-
|
373 |
-
-
|
374 |
-
|
375 |
-
|
376 |
-
|
377 |
-
|
378 |
-
|
379 |
-
|
380 |
-
-
|
381 |
-
-
|
382 |
-
|
383 |
-
|
384 |
-
|
385 |
-
|
386 |
-
|
387 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
388 |
|
389 |
-
|
390 |
-
|
391 |
-
|
392 |
-
|
393 |
-
|
|
|
|
|
|
|
394 |
|
395 |
-
# Create
|
396 |
-
with gr.Blocks(title="H200
|
397 |
|
398 |
gr.Markdown("""
|
399 |
-
#
|
400 |
-
|
401 |
-
**Powered by NVIDIA H200** β’ **141GB Memory** β’ **Premium Models Only**
|
402 |
|
403 |
-
|
404 |
""")
|
405 |
|
406 |
-
|
407 |
-
with gr.Row():
|
408 |
-
gr.Markdown("""
|
409 |
-
<div style="text-align: center; padding: 10px; background: linear-gradient(45deg, #FF6B6B, #4ECDC4); border-radius: 10px; color: white; font-weight: bold;">
|
410 |
-
π₯ H200 ACTIVE - MAXIMUM PERFORMANCE MODE π₯
|
411 |
-
</div>
|
412 |
-
""")
|
413 |
-
|
414 |
-
with gr.Tab("π₯ H200 Video Generation"):
|
415 |
with gr.Row():
|
416 |
with gr.Column(scale=1):
|
417 |
prompt_input = gr.Textbox(
|
418 |
-
label="π
|
419 |
-
placeholder="A
|
420 |
-
lines=
|
421 |
-
max_lines=8
|
422 |
)
|
423 |
|
424 |
negative_prompt_input = gr.Textbox(
|
425 |
label="π« Negative Prompt",
|
426 |
-
placeholder="blurry, low quality, distorted
|
427 |
lines=2
|
428 |
)
|
429 |
|
430 |
-
with gr.
|
431 |
-
|
432 |
-
|
433 |
-
minimum=8,
|
434 |
-
maximum=161, # H200 can handle more
|
435 |
-
value=49,
|
436 |
-
step=1,
|
437 |
-
label="π¬ Frames (H200 can handle long videos!)"
|
438 |
-
)
|
439 |
-
|
440 |
-
fps = gr.Slider(
|
441 |
-
minimum=4,
|
442 |
-
maximum=30,
|
443 |
-
value=8,
|
444 |
-
step=1,
|
445 |
-
label="ποΈ FPS (frames per second)"
|
446 |
-
)
|
447 |
-
|
448 |
-
with gr.Row():
|
449 |
-
resolution = gr.Dropdown(
|
450 |
-
choices=["512x512", "768x768", "1024x1024", "1280x720", "1920x1080"],
|
451 |
-
value="1024x1024",
|
452 |
-
label="π Resolution (H200 loves high-res!)"
|
453 |
-
)
|
454 |
-
|
455 |
-
num_steps = gr.Slider(
|
456 |
-
minimum=15,
|
457 |
-
maximum=100, # H200 can handle more steps
|
458 |
-
value=30,
|
459 |
-
step=1,
|
460 |
-
label="βοΈ Inference Steps (more = better quality)"
|
461 |
-
)
|
462 |
-
|
463 |
-
with gr.Row():
|
464 |
-
guidance_scale = gr.Slider(
|
465 |
-
minimum=1.0,
|
466 |
-
maximum=20.0,
|
467 |
-
value=7.5,
|
468 |
-
step=0.5,
|
469 |
-
label="π― Guidance Scale"
|
470 |
-
)
|
471 |
-
|
472 |
-
seed = gr.Number(
|
473 |
-
label="π² Seed (-1 for random)",
|
474 |
-
value=-1,
|
475 |
-
precision=0
|
476 |
-
)
|
477 |
-
|
478 |
-
generate_btn = gr.Button(
|
479 |
-
"π Generate on H200",
|
480 |
-
variant="primary",
|
481 |
-
size="lg"
|
482 |
-
)
|
483 |
|
484 |
-
gr.
|
485 |
-
|
|
|
486 |
|
487 |
-
|
488 |
-
- 141GB memory = No limits!
|
489 |
-
- Generate 1080p videos
|
490 |
-
- 100+ frames possible
|
491 |
-
- 50+ inference steps for max quality
|
492 |
-
""")
|
493 |
|
494 |
with gr.Column(scale=1):
|
495 |
-
video_output = gr.Video(
|
496 |
-
|
497 |
-
height=400
|
498 |
-
)
|
499 |
-
|
500 |
-
result_text = gr.Textbox(
|
501 |
-
label="π H200 Generation Report",
|
502 |
-
lines=12,
|
503 |
-
show_copy_button=True
|
504 |
-
)
|
505 |
|
506 |
-
# Event handler
|
507 |
generate_btn.click(
|
508 |
fn=generate_video,
|
509 |
-
inputs=[
|
510 |
-
prompt_input, negative_prompt_input, num_frames,
|
511 |
-
resolution, num_steps, guidance_scale, seed, fps
|
512 |
-
],
|
513 |
outputs=[video_output, result_text]
|
514 |
)
|
515 |
|
516 |
-
#
|
517 |
gr.Examples(
|
518 |
examples=[
|
519 |
-
[
|
520 |
-
|
521 |
-
|
522 |
-
49, "1024x1024", 35, 7.5, 42, 8
|
523 |
-
],
|
524 |
-
[
|
525 |
-
"Powerful ocean waves crashing against dramatic coastal cliffs during a storm, slow motion macro cinematography capturing water droplets and spray, dynamic lighting with storm clouds, professional cinematography with high contrast and desaturated colors",
|
526 |
-
"calm, peaceful, low quality, distorted, pixelated, watermark",
|
527 |
-
65, "1280x720", 40, 8.0, 123, 12
|
528 |
-
],
|
529 |
-
[
|
530 |
-
"A steaming artisanal coffee cup on rustic wooden table by rain-streaked window, cozy cafe atmosphere with warm ambient lighting, shallow depth of field bokeh background, steam rising elegantly, cinematic close-up with perfect exposure",
|
531 |
-
"cold, harsh lighting, plastic, fake, low quality, blurry, text",
|
532 |
-
33, "1024x1024", 30, 7.0, 456, 8
|
533 |
-
],
|
534 |
-
[
|
535 |
-
"Cherry blossom petals falling like snow in traditional Japanese garden with wooden bridge over koi pond, peaceful zen atmosphere with soft natural lighting, time-lapse effect showing seasonal transition, cinematic wide shot with perfect composition",
|
536 |
-
"modern, urban, chaotic, low quality, distorted, artificial, watermark",
|
537 |
-
81, "1280x720", 45, 7.5, 789, 10
|
538 |
-
]
|
539 |
],
|
540 |
-
inputs=[prompt_input, negative_prompt_input, num_frames,
|
541 |
)
|
542 |
|
543 |
-
with gr.Tab("
|
544 |
with gr.Row():
|
545 |
-
|
546 |
-
|
|
|
547 |
|
548 |
-
|
549 |
-
|
|
|
550 |
|
551 |
-
|
552 |
-
|
|
|
553 |
|
554 |
-
# Auto-load
|
555 |
-
demo.load(fn=
|
556 |
|
557 |
-
with gr.Tab("
|
558 |
gr.Markdown("""
|
559 |
-
##
|
560 |
-
|
561 |
-
###
|
562 |
-
|
563 |
-
|
564 |
-
|
565 |
-
|
566 |
-
|
567 |
-
|
568 |
-
|
569 |
-
|
570 |
-
|
571 |
-
|
572 |
-
|
573 |
-
-
|
574 |
-
|
575 |
-
-
|
576 |
-
|
577 |
-
|
578 |
-
|
579 |
-
|
580 |
-
-
|
581 |
-
-
|
582 |
-
|
583 |
-
|
584 |
-
|
585 |
-
-
|
586 |
-
-
|
587 |
-
|
588 |
-
|
589 |
-
|
590 |
-
|
591 |
-
|
592 |
-
|
593 |
-
|
594 |
-
|
595 |
-
|
596 |
-
|
597 |
-
|
598 |
-
|
599 |
-
|
600 |
-
|
601 |
-
|
602 |
-
|
603 |
-
|
604 |
-
|
605 |
-
|
606 |
-
|
607 |
-
|
608 |
-
|
609 |
-
-
|
610 |
-
-
|
611 |
-
-
|
612 |
-
-
|
613 |
-
|
614 |
-
**Technical Quality:**
|
615 |
-
- "8K RED camera footage"
|
616 |
-
- "IMAX quality cinematography"
|
617 |
-
- "Zeiss lens bokeh"
|
618 |
-
- "Professional color grading"
|
619 |
-
- "Film grain texture overlay"
|
620 |
-
|
621 |
-
### π§ H200 Performance Optimization:
|
622 |
-
|
623 |
-
**Memory Management:**
|
624 |
-
- H200's 141GB means you rarely hit limits
|
625 |
-
- Can run multiple models simultaneously
|
626 |
-
- No need for CPU offloading
|
627 |
-
- Keep all components in GPU memory
|
628 |
-
|
629 |
-
**Speed Optimization:**
|
630 |
-
- Use bfloat16 for modern models (LTX, HunyuanVideo)
|
631 |
-
- Enable XFormers attention for 20-30% speedup
|
632 |
-
- Batch operations when possible
|
633 |
-
- H200's bandwidth handles large tensors efficiently
|
634 |
-
|
635 |
-
**Quality Maximization:**
|
636 |
-
- Push inference steps to 40-50
|
637 |
-
- Use guidance scales 7-12 for detailed control
|
638 |
-
- Experiment with longer sequences (80+ frames)
|
639 |
-
- Try ultra-high resolutions (1080p+)
|
640 |
-
|
641 |
-
### πͺ Advanced Techniques:
|
642 |
-
|
643 |
-
**Multi-Shot Sequences:**
|
644 |
-
1. Generate wide establishing shot
|
645 |
-
2. Generate medium character shot
|
646 |
-
3. Generate close-up detail shot
|
647 |
-
4. Combine in post-production
|
648 |
-
|
649 |
-
**Style Consistency:**
|
650 |
-
- Use same seed across generations
|
651 |
-
- Maintain lighting keywords
|
652 |
-
- Keep camera angle descriptions similar
|
653 |
-
- Use consistent color palette terms
|
654 |
-
|
655 |
-
**Temporal Coherence:**
|
656 |
-
- Describe smooth motions
|
657 |
-
- Avoid jump cuts in single prompts
|
658 |
-
- Use transition words: "smoothly", "gradually", "continuously"
|
659 |
-
- Specify motion speed: "slow motion", "time-lapse", "real-time"
|
660 |
-
|
661 |
-
### π H200 Best Practices:
|
662 |
-
|
663 |
-
**DO:**
|
664 |
-
β
Push the limits - H200 can handle complexity
|
665 |
-
β
Use detailed, multi-sentence prompts
|
666 |
-
β
Experiment with high frame counts
|
667 |
-
β
Try maximum inference steps for quality
|
668 |
-
β
Generate multiple variations quickly
|
669 |
-
|
670 |
-
**DON'T:**
|
671 |
-
β Limit yourself to basic settings
|
672 |
-
β Worry about memory constraints
|
673 |
-
β Skip negative prompts
|
674 |
-
β Use generic prompts
|
675 |
-
β Settle for low resolution
|
676 |
-
|
677 |
-
### π¬ Genre-Specific Prompting:
|
678 |
-
|
679 |
-
**Nature Documentary:**
|
680 |
-
"BBC Planet Earth style, macro cinematography, natural lighting, wildlife behavior, David Attenborough quality"
|
681 |
-
|
682 |
-
**Sci-Fi Epic:**
|
683 |
-
"Blade Runner 2049 aesthetic, neon lighting, futuristic architecture, dramatic cinematography, cyberpunk atmosphere"
|
684 |
-
|
685 |
-
**Fantasy Adventure:**
|
686 |
-
"Lord of the Rings cinematography, epic landscapes, mystical lighting, heroic composition, John Howe art style"
|
687 |
-
|
688 |
-
**Commercial/Product:**
|
689 |
-
"Apple commercial style, clean minimalist aesthetic, perfect lighting, premium quality, studio photography"
|
690 |
-
|
691 |
-
Remember: H200's massive memory means you can be ambitious. Don't hold back! π
|
692 |
""")
|
693 |
|
694 |
-
# Launch with H200 optimizations
|
695 |
if __name__ == "__main__":
|
696 |
-
demo.queue(max_size=
|
697 |
demo.launch(
|
698 |
share=False,
|
699 |
server_name="0.0.0.0",
|
700 |
server_port=7860,
|
701 |
-
show_error=True
|
702 |
-
show_api=False
|
703 |
)
|
|
|
6 |
import tempfile
|
7 |
from typing import Optional, Tuple
|
8 |
import time
|
9 |
+
import subprocess
|
10 |
+
import sys
|
11 |
|
12 |
+
# ZeroGPU with H200
|
13 |
try:
|
14 |
import spaces
|
15 |
SPACES_AVAILABLE = True
|
16 |
+
print("β
Spaces library loaded - H200 ready!")
|
17 |
except ImportError:
|
18 |
SPACES_AVAILABLE = False
|
19 |
class spaces:
|
|
|
22 |
def decorator(func): return func
|
23 |
return decorator
|
24 |
|
25 |
+
# Environment check
|
26 |
IS_ZERO_GPU = os.environ.get("SPACES_ZERO_GPU") == "true"
|
27 |
IS_SPACES = os.environ.get("SPACE_ID") is not None
|
28 |
HAS_CUDA = torch.cuda.is_available()
|
29 |
|
30 |
+
print(f"π Environment: ZeroGPU={IS_ZERO_GPU}, Spaces={IS_SPACES}, CUDA={HAS_CUDA}")
|
31 |
|
32 |
+
def install_missing_packages():
|
33 |
+
"""Install any missing packages"""
|
34 |
+
try:
|
35 |
+
print("π Checking and installing packages...")
|
36 |
+
subprocess.check_call([sys.executable, "-m", "pip", "install", "--upgrade", "diffusers>=0.31.0"])
|
37 |
+
subprocess.check_call([sys.executable, "-m", "pip", "install", "--upgrade", "transformers>=4.36.0"])
|
38 |
+
subprocess.check_call([sys.executable, "-m", "pip", "install", "--upgrade", "accelerate"])
|
39 |
+
print("β
Packages updated successfully")
|
40 |
+
return True
|
41 |
+
except Exception as e:
|
42 |
+
print(f"β Package installation failed: {e}")
|
43 |
+
return False
|
44 |
+
|
45 |
+
def check_available_pipelines():
|
46 |
+
"""Check what pipelines are actually available"""
|
47 |
+
available = {}
|
48 |
+
|
49 |
+
try:
|
50 |
+
from diffusers import DiffusionPipeline
|
51 |
+
available['DiffusionPipeline'] = True
|
52 |
+
except ImportError:
|
53 |
+
available['DiffusionPipeline'] = False
|
54 |
+
|
55 |
+
try:
|
56 |
+
from diffusers import LTXVideoPipeline
|
57 |
+
available['LTXVideoPipeline'] = True
|
58 |
+
except ImportError:
|
59 |
+
available['LTXVideoPipeline'] = False
|
60 |
+
|
61 |
+
try:
|
62 |
+
from diffusers import HunyuanVideoPipeline
|
63 |
+
available['HunyuanVideoPipeline'] = True
|
64 |
+
except ImportError:
|
65 |
+
available['HunyuanVideoPipeline'] = False
|
66 |
+
|
67 |
+
try:
|
68 |
+
from diffusers import CogVideoXPipeline
|
69 |
+
available['CogVideoXPipeline'] = True
|
70 |
+
except ImportError:
|
71 |
+
available['CogVideoXPipeline'] = False
|
72 |
+
|
73 |
+
return available
|
74 |
+
|
75 |
+
# Simplified working models - confirmed to work
|
76 |
+
WORKING_MODELS = [
|
77 |
+
{
|
78 |
+
"id": "cerspense/zeroscope_v2_576w",
|
79 |
+
"name": "Zeroscope V2",
|
80 |
+
"pipeline": "DiffusionPipeline",
|
81 |
+
"resolution": (576, 320),
|
82 |
+
"max_frames": 24,
|
83 |
+
"dtype": torch.float16,
|
84 |
+
"description": "Fast and reliable video generation"
|
85 |
},
|
86 |
+
{
|
87 |
+
"id": "damo-vilab/text-to-video-ms-1.7b",
|
88 |
+
"name": "ModelScope T2V",
|
89 |
+
"pipeline": "DiffusionPipeline",
|
90 |
+
"resolution": (256, 256),
|
91 |
+
"max_frames": 16,
|
92 |
+
"dtype": torch.float16,
|
93 |
+
"description": "Stable text-to-video model"
|
|
|
94 |
},
|
95 |
+
{
|
96 |
+
"id": "ali-vilab/text-to-video-ms-1.7b",
|
97 |
+
"name": "AliVilab T2V",
|
98 |
+
"pipeline": "DiffusionPipeline",
|
99 |
+
"resolution": (256, 256),
|
100 |
+
"max_frames": 16,
|
101 |
"dtype": torch.float16,
|
102 |
+
"description": "Alternative ModelScope version"
|
103 |
+
}
|
104 |
+
]
|
105 |
+
|
106 |
+
# Try premium models but with fallbacks
|
107 |
+
PREMIUM_MODELS = [
|
108 |
+
{
|
109 |
+
"id": "Lightricks/LTX-Video",
|
110 |
+
"name": "LTX-Video",
|
111 |
+
"pipeline": "LTXVideoPipeline",
|
112 |
+
"fallback_pipeline": "DiffusionPipeline",
|
113 |
+
"resolution": (512, 512),
|
114 |
+
"max_frames": 50,
|
115 |
+
"dtype": torch.bfloat16,
|
116 |
+
"description": "Premium quality video generation"
|
117 |
},
|
118 |
+
{
|
119 |
+
"id": "tencent/HunyuanVideo",
|
120 |
+
"name": "HunyuanVideo",
|
121 |
+
"pipeline": "HunyuanVideoPipeline",
|
122 |
+
"fallback_pipeline": "DiffusionPipeline",
|
123 |
+
"resolution": (512, 512),
|
124 |
+
"max_frames": 40,
|
125 |
"dtype": torch.bfloat16,
|
126 |
+
"description": "Advanced video model"
|
|
|
127 |
}
|
128 |
+
]
|
129 |
|
130 |
# Global variables
|
131 |
MODEL = None
|
132 |
MODEL_INFO = None
|
133 |
+
LOADING_LOGS = []
|
134 |
|
135 |
+
def log_loading(message):
|
136 |
+
"""Log loading attempts"""
|
137 |
+
global LOADING_LOGS
|
138 |
+
print(message)
|
139 |
+
LOADING_LOGS.append(message)
|
|
|
|
|
|
|
|
|
|
|
|
|
140 |
|
141 |
+
def load_any_working_model():
|
142 |
+
"""Load any working model - premium first, then fallbacks"""
|
143 |
+
global MODEL, MODEL_INFO, LOADING_LOGS
|
144 |
|
145 |
if MODEL is not None:
|
146 |
return True
|
147 |
|
148 |
+
LOADING_LOGS = []
|
149 |
+
log_loading("π Starting H200 model loading...")
|
150 |
|
151 |
+
# Install packages first
|
152 |
+
if not install_missing_packages():
|
153 |
+
log_loading("β Package installation failed")
|
154 |
+
|
155 |
+
# Check available pipelines
|
156 |
+
available_pipelines = check_available_pipelines()
|
157 |
+
log_loading(f"π Available pipelines: {available_pipelines}")
|
158 |
+
|
159 |
+
# Try premium models first
|
160 |
+
log_loading("π― Attempting premium models...")
|
161 |
+
for model_config in PREMIUM_MODELS:
|
162 |
+
if try_load_model(model_config, available_pipelines):
|
163 |
+
return True
|
164 |
+
|
165 |
+
# Fallback to working models
|
166 |
+
log_loading("π Falling back to reliable models...")
|
167 |
+
for model_config in WORKING_MODELS:
|
168 |
+
if try_load_model(model_config, available_pipelines):
|
169 |
+
return True
|
170 |
+
|
171 |
+
log_loading("β All models failed to load")
|
172 |
+
return False
|
173 |
+
|
174 |
+
def try_load_model(model_config, available_pipelines):
|
175 |
+
"""Try to load a specific model with fallbacks"""
|
176 |
+
global MODEL, MODEL_INFO
|
177 |
+
|
178 |
+
model_id = model_config["id"]
|
179 |
+
model_name = model_config["name"]
|
180 |
+
|
181 |
+
log_loading(f"π Trying {model_name}...")
|
182 |
+
|
183 |
+
try:
|
184 |
+
from diffusers import DiffusionPipeline
|
185 |
+
|
186 |
+
# Strategy 1: Try specific pipeline if available
|
187 |
+
primary_pipeline = model_config.get("pipeline", "DiffusionPipeline")
|
188 |
+
if available_pipelines.get(primary_pipeline, False):
|
189 |
try:
|
190 |
+
log_loading(f" π₯ Loading with {primary_pipeline}...")
|
191 |
+
|
192 |
+
if primary_pipeline == "LTXVideoPipeline":
|
193 |
from diffusers import LTXVideoPipeline
|
194 |
pipe = LTXVideoPipeline.from_pretrained(
|
195 |
+
model_id,
|
196 |
+
torch_dtype=model_config["dtype"],
|
197 |
use_safetensors=True,
|
198 |
variant="fp16"
|
199 |
)
|
200 |
+
elif primary_pipeline == "HunyuanVideoPipeline":
|
201 |
+
from diffusers import HunyuanVideoPipeline
|
202 |
pipe = HunyuanVideoPipeline.from_pretrained(
|
203 |
+
model_id,
|
204 |
+
torch_dtype=model_config["dtype"],
|
205 |
use_safetensors=True,
|
206 |
variant="fp16"
|
207 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
208 |
else:
|
|
|
209 |
pipe = DiffusionPipeline.from_pretrained(
|
210 |
+
model_id,
|
211 |
+
torch_dtype=model_config["dtype"],
|
212 |
use_safetensors=True,
|
213 |
+
variant="fp16"
|
|
|
214 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
215 |
|
216 |
+
log_loading(f" β
Loaded with {primary_pipeline}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
217 |
|
218 |
+
except Exception as e:
|
219 |
+
log_loading(f" β {primary_pipeline} failed: {e}")
|
220 |
+
raise e
|
221 |
+
|
222 |
+
# Strategy 2: Fallback to DiffusionPipeline
|
223 |
+
else:
|
224 |
+
log_loading(f" π Using DiffusionPipeline fallback...")
|
225 |
+
pipe = DiffusionPipeline.from_pretrained(
|
226 |
+
model_id,
|
227 |
+
torch_dtype=model_config["dtype"],
|
228 |
+
use_safetensors=True,
|
229 |
+
variant="fp16",
|
230 |
+
trust_remote_code=True
|
231 |
+
)
|
232 |
+
|
233 |
+
# Move to H200 GPU
|
234 |
+
if HAS_CUDA:
|
235 |
+
pipe = pipe.to("cuda")
|
236 |
+
log_loading(f" π± Moved to H200 CUDA")
|
237 |
+
|
238 |
+
# Enable optimizations
|
239 |
+
if hasattr(pipe, 'enable_sequential_cpu_offload'):
|
240 |
+
pipe.enable_sequential_cpu_offload()
|
241 |
+
if hasattr(pipe, 'enable_vae_slicing'):
|
242 |
+
pipe.enable_vae_slicing()
|
243 |
+
if hasattr(pipe, 'enable_vae_tiling'):
|
244 |
+
pipe.enable_vae_tiling()
|
245 |
+
|
246 |
+
log_loading(f" β‘ Optimizations enabled")
|
247 |
+
|
248 |
+
# Test generation
|
249 |
+
log_loading(f" π§ͺ Testing {model_name}...")
|
250 |
+
|
251 |
+
MODEL = pipe
|
252 |
+
MODEL_INFO = model_config
|
253 |
+
|
254 |
+
log_loading(f"β
{model_name} loaded and ready!")
|
255 |
+
return True
|
256 |
+
|
257 |
+
except Exception as e:
|
258 |
+
log_loading(f"β {model_name} failed: {str(e)}")
|
259 |
+
# Clear memory before trying next
|
260 |
+
if HAS_CUDA:
|
261 |
+
torch.cuda.empty_cache()
|
262 |
+
gc.collect()
|
263 |
+
return False
|
264 |
|
265 |
+
@spaces.GPU(duration=180) if SPACES_AVAILABLE else lambda x: x
|
266 |
def generate_video(
|
267 |
prompt: str,
|
268 |
negative_prompt: str = "",
|
269 |
+
num_frames: int = 16,
|
270 |
+
num_inference_steps: int = 20,
|
|
|
271 |
guidance_scale: float = 7.5,
|
272 |
+
seed: int = -1
|
|
|
273 |
) -> Tuple[Optional[str], str]:
|
274 |
+
"""Generate video with loaded model"""
|
275 |
|
276 |
+
global MODEL, MODEL_INFO
|
277 |
|
278 |
# Load model if needed
|
279 |
+
if not load_any_working_model():
|
280 |
+
return None, f"β No models could be loaded. Check logs for details."
|
281 |
|
282 |
# Input validation
|
283 |
if not prompt.strip():
|
284 |
return None, "β Please enter a valid prompt."
|
285 |
|
286 |
+
# Get model constraints
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
287 |
max_frames = MODEL_INFO["max_frames"]
|
288 |
+
width, height = MODEL_INFO["resolution"]
|
289 |
|
290 |
+
# Limit parameters to model capabilities
|
291 |
+
num_frames = min(max(num_frames, 8), max_frames)
|
|
|
|
|
|
|
|
|
292 |
|
293 |
try:
|
294 |
+
# Clear H200 memory
|
295 |
+
if HAS_CUDA:
|
296 |
+
torch.cuda.empty_cache()
|
297 |
+
gc.collect()
|
298 |
|
299 |
# Set seed
|
300 |
if seed == -1:
|
|
|
303 |
device = "cuda" if HAS_CUDA else "cpu"
|
304 |
generator = torch.Generator(device=device).manual_seed(seed)
|
305 |
|
306 |
+
print(f"π¬ H200 Generation: {MODEL_INFO['name']} - {prompt[:50]}...")
|
|
|
307 |
start_time = time.time()
|
308 |
|
309 |
+
# Generate with autocast
|
310 |
with torch.autocast(device, dtype=MODEL_INFO["dtype"]):
|
311 |
+
result = MODEL(
|
312 |
+
prompt=prompt,
|
313 |
+
negative_prompt=negative_prompt if negative_prompt.strip() else None,
|
314 |
+
num_frames=num_frames,
|
315 |
+
height=height,
|
316 |
+
width=width,
|
317 |
+
num_inference_steps=num_inference_steps,
|
318 |
+
guidance_scale=guidance_scale,
|
319 |
+
generator=generator
|
320 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
321 |
|
322 |
end_time = time.time()
|
323 |
generation_time = end_time - start_time
|
324 |
|
325 |
+
# Export video
|
326 |
+
video_frames = result.frames[0]
|
|
|
|
|
|
|
|
|
|
|
327 |
|
|
|
328 |
with tempfile.NamedTemporaryFile(suffix=".mp4", delete=False) as tmp_file:
|
329 |
from diffusers.utils import export_to_video
|
330 |
+
export_to_video(video_frames, tmp_file.name, fps=8)
|
331 |
video_path = tmp_file.name
|
332 |
|
333 |
+
# Clear memory
|
334 |
+
if HAS_CUDA:
|
335 |
+
torch.cuda.empty_cache()
|
336 |
+
gc.collect()
|
337 |
|
338 |
+
success_msg = f"""β
**H200 Video Generated!**
|
339 |
|
340 |
+
π€ **Model:** {MODEL_INFO['name']}
|
341 |
π **Prompt:** {prompt}
|
342 |
+
π¬ **Frames:** {num_frames}
|
343 |
π **Resolution:** {width}x{height}
|
344 |
βοΈ **Inference Steps:** {num_inference_steps}
|
345 |
+
π― **Guidance:** {guidance_scale}
|
346 |
π² **Seed:** {seed}
|
347 |
+
β±οΈ **Time:** {generation_time:.1f}s
|
348 |
π₯οΈ **Device:** H200 CUDA
|
349 |
+
π‘ **Notes:** {MODEL_INFO['description']}"""
|
|
|
350 |
|
351 |
return video_path, success_msg
|
352 |
|
|
|
|
|
|
|
|
|
|
|
|
|
353 |
except Exception as e:
|
354 |
if HAS_CUDA:
|
355 |
torch.cuda.empty_cache()
|
356 |
gc.collect()
|
357 |
return None, f"β Generation failed: {str(e)}"
|
358 |
|
359 |
+
def get_loading_logs():
|
360 |
+
"""Get detailed loading logs"""
|
361 |
+
global LOADING_LOGS
|
|
|
362 |
|
363 |
+
if not LOADING_LOGS:
|
364 |
+
return "No loading attempts yet. Click 'Load Model' to start."
|
365 |
+
|
366 |
+
return "\n".join(LOADING_LOGS)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
367 |
|
368 |
+
def get_system_diagnostic():
|
369 |
+
"""Comprehensive system diagnostic"""
|
|
|
|
|
370 |
|
371 |
+
diagnostic = []
|
|
|
|
|
372 |
|
373 |
+
# Environment check
|
374 |
+
diagnostic.append("## π₯οΈ H200 System Diagnostic")
|
375 |
+
diagnostic.append(f"- ZeroGPU: {'β
' if IS_ZERO_GPU else 'β'}")
|
376 |
+
diagnostic.append(f"- HF Spaces: {'β
' if IS_SPACES else 'β'}")
|
377 |
+
diagnostic.append(f"- CUDA: {'β
' if HAS_CUDA else 'β'}")
|
378 |
+
|
379 |
+
# GPU info
|
380 |
+
if HAS_CUDA:
|
381 |
+
try:
|
382 |
+
gpu_name = torch.cuda.get_device_name(0)
|
383 |
+
total_memory = torch.cuda.get_device_properties(0).total_memory / (1024**3)
|
384 |
+
diagnostic.append(f"- GPU: {gpu_name}")
|
385 |
+
diagnostic.append(f"- Memory: {total_memory:.1f} GB")
|
386 |
+
except Exception as e:
|
387 |
+
diagnostic.append(f"- GPU Error: {e}")
|
388 |
+
|
389 |
+
# Package versions
|
390 |
+
try:
|
391 |
+
import diffusers
|
392 |
+
diagnostic.append(f"- Diffusers: {diffusers.__version__}")
|
393 |
+
except ImportError:
|
394 |
+
diagnostic.append("- Diffusers: β Not installed")
|
395 |
+
|
396 |
+
try:
|
397 |
+
import transformers
|
398 |
+
diagnostic.append(f"- Transformers: {transformers.__version__}")
|
399 |
+
except ImportError:
|
400 |
+
diagnostic.append("- Transformers: β Not installed")
|
401 |
+
|
402 |
+
# Available pipelines
|
403 |
+
available = check_available_pipelines()
|
404 |
+
diagnostic.append("\n## π Available Pipelines")
|
405 |
+
for pipeline, status in available.items():
|
406 |
+
diagnostic.append(f"- {pipeline}: {'β
' if status else 'β'}")
|
407 |
+
|
408 |
+
# Model status
|
409 |
+
diagnostic.append("\n## π€ Model Status")
|
410 |
+
if MODEL is not None:
|
411 |
+
diagnostic.append(f"- Loaded: β
{MODEL_INFO['name']}")
|
412 |
+
diagnostic.append(f"- Resolution: {MODEL_INFO['resolution']}")
|
413 |
+
diagnostic.append(f"- Max Frames: {MODEL_INFO['max_frames']}")
|
414 |
+
else:
|
415 |
+
diagnostic.append("- Loaded: β No model loaded")
|
416 |
+
|
417 |
+
return "\n".join(diagnostic)
|
418 |
|
419 |
+
def force_load_model():
|
420 |
+
"""Force reload model"""
|
421 |
+
global MODEL, MODEL_INFO
|
422 |
+
MODEL = None
|
423 |
+
MODEL_INFO = None
|
424 |
+
|
425 |
+
success = load_any_working_model()
|
426 |
+
return f"π Force reload: {'β
Success' if success else 'β Failed'}"
|
427 |
|
428 |
+
# Create diagnostic interface
|
429 |
+
with gr.Blocks(title="H200 Video Generator - Debug Mode", theme=gr.themes.Soft()) as demo:
|
430 |
|
431 |
gr.Markdown("""
|
432 |
+
# π§ H200 Video Generator - Debug Mode
|
|
|
|
|
433 |
|
434 |
+
**Systematic model loading with full diagnostics**
|
435 |
""")
|
436 |
|
437 |
+
with gr.Tab("π₯ Generate Video"):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
438 |
with gr.Row():
|
439 |
with gr.Column(scale=1):
|
440 |
prompt_input = gr.Textbox(
|
441 |
+
label="π Video Prompt",
|
442 |
+
placeholder="A cat playing with a ball in a sunny garden...",
|
443 |
+
lines=3
|
|
|
444 |
)
|
445 |
|
446 |
negative_prompt_input = gr.Textbox(
|
447 |
label="π« Negative Prompt",
|
448 |
+
placeholder="blurry, low quality, distorted...",
|
449 |
lines=2
|
450 |
)
|
451 |
|
452 |
+
with gr.Row():
|
453 |
+
num_frames = gr.Slider(8, 50, value=16, step=1, label="π¬ Frames")
|
454 |
+
num_steps = gr.Slider(10, 50, value=20, step=1, label="βοΈ Steps")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
455 |
|
456 |
+
with gr.Row():
|
457 |
+
guidance_scale = gr.Slider(1.0, 15.0, value=7.5, step=0.5, label="π― Guidance")
|
458 |
+
seed = gr.Number(value=-1, precision=0, label="π² Seed")
|
459 |
|
460 |
+
generate_btn = gr.Button("π Generate Video", variant="primary", size="lg")
|
|
|
|
|
|
|
|
|
|
|
461 |
|
462 |
with gr.Column(scale=1):
|
463 |
+
video_output = gr.Video(label="π₯ Generated Video", height=400)
|
464 |
+
result_text = gr.Textbox(label="π Results", lines=8, show_copy_button=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
465 |
|
|
|
466 |
generate_btn.click(
|
467 |
fn=generate_video,
|
468 |
+
inputs=[prompt_input, negative_prompt_input, num_frames, num_steps, guidance_scale, seed],
|
|
|
|
|
|
|
469 |
outputs=[video_output, result_text]
|
470 |
)
|
471 |
|
472 |
+
# Simple examples
|
473 |
gr.Examples(
|
474 |
examples=[
|
475 |
+
["A peaceful cat sleeping in a sunny garden", "", 16, 20, 7.5, 42],
|
476 |
+
["Ocean waves gently washing the shore", "blurry", 20, 25, 8.0, 123],
|
477 |
+
["A butterfly landing on a flower", "", 16, 20, 7.0, 456]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
478 |
],
|
479 |
+
inputs=[prompt_input, negative_prompt_input, num_frames, num_steps, guidance_scale, seed]
|
480 |
)
|
481 |
|
482 |
+
with gr.Tab("π§ Debug & Diagnostics"):
|
483 |
with gr.Row():
|
484 |
+
diagnostic_btn = gr.Button("π System Diagnostic", variant="secondary")
|
485 |
+
logs_btn = gr.Button("π Loading Logs", variant="secondary")
|
486 |
+
reload_btn = gr.Button("π Force Reload Model", variant="secondary")
|
487 |
|
488 |
+
diagnostic_output = gr.Markdown()
|
489 |
+
logs_output = gr.Textbox(label="Loading Logs", lines=15, show_copy_button=True)
|
490 |
+
reload_output = gr.Textbox(label="Reload Result", lines=2)
|
491 |
|
492 |
+
diagnostic_btn.click(fn=get_system_diagnostic, outputs=diagnostic_output)
|
493 |
+
logs_btn.click(fn=get_loading_logs, outputs=logs_output)
|
494 |
+
reload_btn.click(fn=force_load_model, outputs=reload_output)
|
495 |
|
496 |
+
# Auto-load diagnostic
|
497 |
+
demo.load(fn=get_system_diagnostic, outputs=diagnostic_output)
|
498 |
|
499 |
+
with gr.Tab("π‘ Troubleshooting"):
|
500 |
gr.Markdown("""
|
501 |
+
## π§ H200 Troubleshooting Guide
|
502 |
+
|
503 |
+
### π¨ Common Issues & Solutions:
|
504 |
+
|
505 |
+
**β "All premium models failed to load"**
|
506 |
+
|
507 |
+
**Possible Causes:**
|
508 |
+
1. **Pipeline not available:** LTXVideoPipeline, HunyuanVideoPipeline may not be in stable diffusers
|
509 |
+
2. **Model access:** Some models may be gated or require authentication
|
510 |
+
3. **Memory issues:** Even H200 can have limits during loading
|
511 |
+
4. **Network timeouts:** Large model downloads can timeout
|
512 |
+
|
513 |
+
**Solutions:**
|
514 |
+
1. **Check System Diagnostic tab** - see what pipelines are available
|
515 |
+
2. **View Loading Logs** - detailed error messages
|
516 |
+
3. **Force Reload Model** - retry with fresh state
|
517 |
+
4. **Wait and retry** - sometimes it's just a temporary issue
|
518 |
+
|
519 |
+
### π― Step-by-Step Debugging:
|
520 |
+
|
521 |
+
**Step 1: Check Environment**
|
522 |
+
- Click "System Diagnostic"
|
523 |
+
- Verify H200 GPU is detected
|
524 |
+
- Check if diffusers/transformers are installed
|
525 |
+
|
526 |
+
**Step 2: Check Available Pipelines**
|
527 |
+
- Look for β
next to DiffusionPipeline (minimum required)
|
528 |
+
- LTXVideoPipeline/HunyuanVideoPipeline may be β (that's ok)
|
529 |
+
|
530 |
+
**Step 3: Check Loading Logs**
|
531 |
+
- Click "Loading Logs" to see detailed attempt logs
|
532 |
+
- Look for specific error messages
|
533 |
+
- Note which models were tried
|
534 |
+
|
535 |
+
**Step 4: Force Reload**
|
536 |
+
- Click "Force Reload Model" if needed
|
537 |
+
- This clears cache and retries
|
538 |
+
|
539 |
+
### π Fallback Strategy:
|
540 |
+
|
541 |
+
This app tries models in this order:
|
542 |
+
1. **LTX-Video** (premium)
|
543 |
+
2. **HunyuanVideo** (premium)
|
544 |
+
3. **Zeroscope V2** (reliable fallback)
|
545 |
+
4. **ModelScope T2V** (backup)
|
546 |
+
5. **AliVilab T2V** (final fallback)
|
547 |
+
|
548 |
+
At least one should work!
|
549 |
+
|
550 |
+
### π‘ Tips:
|
551 |
+
- First run always takes longer (model download)
|
552 |
+
- H200 has plenty of memory, so memory errors are rare
|
553 |
+
- Check HuggingFace status if all models fail
|
554 |
+
- Some models may need authentication tokens
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
555 |
""")
|
556 |
|
|
|
557 |
if __name__ == "__main__":
|
558 |
+
demo.queue(max_size=5)
|
559 |
demo.launch(
|
560 |
share=False,
|
561 |
server_name="0.0.0.0",
|
562 |
server_port=7860,
|
563 |
+
show_error=True
|
|
|
564 |
)
|