ozilion commited on
Commit
7358182
Β·
verified Β·
1 Parent(s): 4c907e1

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +591 -321
app.py CHANGED
@@ -7,427 +7,697 @@ import tempfile
7
  from typing import Optional, Tuple
8
  import time
9
 
10
- # ZeroGPU import
11
  try:
12
  import spaces
13
  SPACES_AVAILABLE = True
 
14
  except ImportError:
15
  SPACES_AVAILABLE = False
16
  class spaces:
17
  @staticmethod
18
- def GPU(duration=60):
19
- def decorator(func):
20
- return func
21
  return decorator
22
 
 
23
  IS_ZERO_GPU = os.environ.get("SPACES_ZERO_GPU") == "true"
24
  IS_SPACES = os.environ.get("SPACE_ID") is not None
 
25
 
26
- def load_ltx_model_manual():
27
- """Manually load LTX-Video model using transformers"""
28
- try:
29
- print("πŸ”„ Attempting to load LTX-Video with transformers...")
30
-
31
- from transformers import AutoModel, AutoTokenizer, AutoProcessor
32
-
33
- model_id = "Lightricks/LTX-Video"
34
-
35
- # Try loading with AutoModel
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
36
  try:
37
- processor = AutoProcessor.from_pretrained(model_id)
38
- model = AutoModel.from_pretrained(
39
- model_id,
40
- torch_dtype=torch.float16,
41
- low_cpu_mem_usage=True,
42
- trust_remote_code=True # Important for new models
43
- )
44
-
45
- if torch.cuda.is_available():
46
- model = model.to("cuda")
47
-
48
- print("βœ… Model loaded with transformers")
49
- return model, processor, None
 
 
 
 
 
 
 
 
 
 
50
 
51
- except Exception as e:
52
- print(f"AutoModel failed: {e}")
53
- return None, None, str(e)
54
 
55
- except Exception as e:
56
- return None, None, f"Manual loading failed: {e}"
57
-
58
- def load_alternative_video_model():
59
- """Load a working alternative video generation model"""
60
- try:
61
- print("πŸ”„ Loading alternative video model...")
62
-
63
- from diffusers import DiffusionPipeline
64
-
65
- # Use Zeroscope or ModelScope as alternatives
66
- alternatives = [
67
- "cerspense/zeroscope_v2_576w",
68
- "damo-vilab/text-to-video-ms-1.7b",
69
- "ali-vilab/text-to-video-ms-1.7b"
70
- ]
71
-
72
- for model_id in alternatives:
73
  try:
74
- print(f"Trying {model_id}...")
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
75
  pipe = DiffusionPipeline.from_pretrained(
76
- model_id,
77
- torch_dtype=torch.float16,
78
  use_safetensors=True,
79
- variant="fp16"
 
80
  )
 
 
 
 
 
81
 
82
- if torch.cuda.is_available():
83
- pipe = pipe.to("cuda")
84
-
85
- # Enable optimizations
86
- pipe.enable_sequential_cpu_offload()
87
- pipe.enable_vae_slicing()
88
-
89
- print(f"βœ… Successfully loaded {model_id}")
90
- return pipe, model_id, None
91
 
92
- except Exception as e:
93
- print(f"Failed to load {model_id}: {e}")
94
- continue
95
-
96
- return None, None, "All alternative models failed"
97
-
98
- except Exception as e:
99
- return None, None, f"Alternative loading failed: {e}"
100
-
101
- def create_mock_video(prompt, num_frames=16, width=512, height=512):
102
- """Create a mock video for demonstration"""
103
- try:
104
- import cv2
105
- from PIL import Image, ImageDraw, ImageFont
106
-
107
- # Create temporary video file
108
- with tempfile.NamedTemporaryFile(suffix=".mp4", delete=False) as tmp_file:
109
- video_path = tmp_file.name
110
-
111
- # Video settings
112
- fps = 8
113
- fourcc = cv2.VideoWriter_fourcc(*'mp4v')
114
- out = cv2.VideoWriter(video_path, fourcc, fps, (width, height))
115
-
116
- # Color themes
117
- colors = [(255, 100, 100), (100, 255, 100), (100, 100, 255), (255, 255, 100)]
118
-
119
- for i in range(num_frames):
120
- # Create frame
121
- img = Image.new('RGB', (width, height), color=colors[i % len(colors)])
122
- draw = ImageDraw.Draw(img)
123
 
124
- try:
125
- font = ImageFont.truetype("arial.ttf", 24)
126
- except:
127
- font = ImageFont.load_default()
128
 
129
- # Add text
130
- draw.text((50, height//2 - 50), f"Frame {i+1}/{num_frames}", fill=(255, 255, 255), font=font)
131
- draw.text((50, height//2), f"Prompt: {prompt[:30]}...", fill=(255, 255, 255), font=font)
132
- draw.text((50, height//2 + 50), "DEMO MODE", fill=(0, 0, 0), font=font)
133
 
134
- # Convert to OpenCV format
135
- frame = cv2.cvtColor(np.array(img), cv2.COLOR_RGB2BGR)
136
- out.write(frame)
137
-
138
- out.release()
139
- return video_path
140
-
141
- except Exception as e:
142
- return None
143
-
144
- # Global variables
145
- MODEL = None
146
- PROCESSOR = None
147
- MODEL_TYPE = None
148
- MODEL_ERROR = None
149
-
150
- def initialize_model():
151
- """Initialize model with fallback options"""
152
- global MODEL, PROCESSOR, MODEL_TYPE, MODEL_ERROR
153
-
154
- if MODEL is not None:
155
- return True
156
-
157
- if MODEL_ERROR is not None:
158
- return False
159
-
160
- print("πŸš€ Initializing video model...")
161
-
162
- # Strategy 1: Try manual LTX-Video loading
163
- print("Trying LTX-Video...")
164
- MODEL, PROCESSOR, error = load_ltx_model_manual()
165
- if MODEL is not None:
166
- MODEL_TYPE = "LTX-Video"
167
- return True
168
-
169
- print(f"LTX-Video failed: {error}")
170
-
171
- # Strategy 2: Try alternative models
172
- print("Trying alternative models...")
173
- MODEL, MODEL_TYPE, error = load_alternative_video_model()
174
- if MODEL is not None:
175
- PROCESSOR = None # Diffusion pipeline doesn't need separate processor
176
- return True
177
-
178
- print(f"Alternative models failed: {error}")
179
 
180
- # Strategy 3: Use mock generation
181
- MODEL_TYPE = "mock"
182
- MODEL_ERROR = "All models failed - using demo mode"
183
  return False
184
 
185
- @spaces.GPU(duration=120) if SPACES_AVAILABLE else lambda x: x
186
  def generate_video(
187
  prompt: str,
188
  negative_prompt: str = "",
189
- num_frames: int = 16,
190
- height: int = 512,
191
- width: int = 512,
192
- num_inference_steps: int = 20,
193
  guidance_scale: float = 7.5,
194
- seed: int = -1
 
195
  ) -> Tuple[Optional[str], str]:
196
- """Generate video with fallback strategies"""
197
 
198
- # Initialize model
199
- model_loaded = initialize_model()
 
 
 
200
 
201
  # Input validation
202
  if not prompt.strip():
203
  return None, "❌ Please enter a valid prompt."
204
 
205
- # Limit parameters
206
- num_frames = min(max(num_frames, 8), 25)
207
- num_inference_steps = min(max(num_inference_steps, 10), 30)
208
- height = min(max(height, 256), 768)
209
- width = min(max(width, 256), 768)
 
 
 
 
 
 
 
210
 
211
- # Set seed
212
- if seed == -1:
213
- seed = np.random.randint(0, 2**32 - 1)
 
 
 
214
 
215
  try:
216
- # Clear memory
217
- if torch.cuda.is_available():
218
- torch.cuda.empty_cache()
219
- gc.collect()
220
 
221
- start_time = time.time()
 
 
222
 
223
- if MODEL_TYPE == "mock" or not model_loaded:
224
- # Mock generation
225
- print("🎭 Using mock generation")
226
- video_path = create_mock_video(prompt, num_frames, width, height)
227
-
228
- if video_path:
229
- end_time = time.time()
230
- return video_path, f"""
231
- 🎭 **Demo Video Generated**
232
-
233
- πŸ“ Prompt: {prompt}
234
- ⚠️ Note: This is a demo mode because video models couldn't be loaded.
235
-
236
- 🎬 Frames: {num_frames}
237
- πŸ“ Resolution: {width}x{height}
238
- ⏱️ Time: {end_time - start_time:.1f}s
239
- πŸ”§ Status: {MODEL_ERROR or 'Demo mode'}
240
-
241
- πŸ’‘ **To enable real video generation:**
242
- - Check if LTX-Video is available in your region
243
- - Try upgrading diffusers: `pip install diffusers --upgrade`
244
- - Or wait for official LTX-Video support in diffusers
245
- """
246
- else:
247
- return None, "❌ Even demo generation failed"
248
-
249
- elif MODEL_TYPE == "LTX-Video":
250
- # Manual LTX-Video generation
251
- print("πŸš€ Using LTX-Video")
252
-
253
- # This would need the actual implementation based on the model's API
254
- # For now, return a message about manual implementation needed
255
- return None, f"""
256
- ⚠️ **Manual Implementation Required**
257
-
258
- LTX-Video model was loaded but requires custom generation code.
259
- The model API is not yet standardized in diffusers.
260
-
261
- πŸ“‹ **Next Steps:**
262
- 1. Check Lightricks/LTX-Video model documentation
263
- 2. Implement custom inference pipeline
264
- 3. Or wait for official diffusers support
265
-
266
- πŸ”§ **Current Status:** Model loaded, awaiting implementation
267
- """
268
 
269
- else:
270
- # Alternative model generation
271
- print(f"πŸ”„ Using {MODEL_TYPE}")
 
 
 
 
 
 
 
 
 
 
 
 
272
 
273
- generator = torch.Generator(device="cuda" if torch.cuda.is_available() else "cpu").manual_seed(seed)
 
 
274
 
275
- result = MODEL(
276
- prompt=prompt,
277
- negative_prompt=negative_prompt if negative_prompt.strip() else None,
278
- num_frames=num_frames,
279
- height=height,
280
- width=width,
281
- num_inference_steps=num_inference_steps,
282
- guidance_scale=guidance_scale,
283
- generator=generator
284
- )
285
 
286
- # Export video
 
 
 
 
 
 
 
 
287
  video_frames = result.frames[0]
288
-
289
- with tempfile.NamedTemporaryFile(suffix=".mp4", delete=False) as tmp_file:
290
- from diffusers.utils import export_to_video
291
- export_to_video(video_frames, tmp_file.name, fps=8)
292
- video_path = tmp_file.name
293
-
294
- end_time = time.time()
295
-
296
- return video_path, f"""
297
- βœ… **Video Generated Successfully!**
 
 
 
 
 
 
298
 
299
- πŸ“ Prompt: {prompt}
300
- πŸ€– Model: {MODEL_TYPE}
301
- 🎬 Frames: {num_frames}
302
- πŸ“ Resolution: {width}x{height}
303
- βš™οΈ Steps: {num_inference_steps}
304
- 🎯 Guidance: {guidance_scale}
305
- 🎲 Seed: {seed}
306
- ⏱️ Time: {end_time - start_time:.1f}s
307
- πŸ–₯️ Device: {'CUDA' if torch.cuda.is_available() else 'CPU'}
308
- """
 
 
 
 
 
 
 
 
 
309
 
310
  except Exception as e:
311
- if torch.cuda.is_available():
312
  torch.cuda.empty_cache()
313
  gc.collect()
314
  return None, f"❌ Generation failed: {str(e)}"
315
 
316
- def get_system_info():
317
- """Get system information"""
 
 
318
 
319
- # Check what's available
320
  try:
321
- from diffusers import __version__ as diffusers_version
322
- available_pipelines = []
323
- try:
324
- from diffusers import LTXVideoPipeline
325
- available_pipelines.append("βœ… LTXVideoPipeline")
326
- except ImportError:
327
- available_pipelines.append("❌ LTXVideoPipeline")
328
 
329
- try:
330
- from diffusers import DiffusionPipeline
331
- available_pipelines.append("βœ… DiffusionPipeline")
332
- except ImportError:
333
- available_pipelines.append("❌ DiffusionPipeline")
334
-
335
- except ImportError:
336
- diffusers_version = "❌ Not installed"
337
- available_pipelines = ["❌ Diffusers not available"]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
338
 
339
- return f"""
340
- ## πŸ–₯️ System Information
341
 
342
- **Environment:**
343
- - πŸš€ ZeroGPU: {'βœ… Active' if IS_ZERO_GPU else '❌ Not detected'}
344
- - 🏠 HF Spaces: {'βœ…' if IS_SPACES else '❌'}
345
- - πŸ”₯ CUDA: {'βœ…' if torch.cuda.is_available() else '❌'}
 
346
 
347
- **Packages:**
348
- - PyTorch: {torch.__version__}
349
- - Diffusers: {diffusers_version}
350
- - Available Pipelines: {', '.join(available_pipelines)}
 
351
 
352
- **Model Status:**
353
- - Current Model: {MODEL_TYPE or 'Not loaded'}
354
- - Status: {'βœ… Ready' if MODEL is not None else '⚠️ ' + (MODEL_ERROR or 'Not initialized')}
 
 
355
 
356
- **Recommendation:**
357
- - LTX-Video is very new and may not be in stable diffusers yet
358
- - Using alternative models or demo mode
359
- - Check back later for official support
360
- """
361
 
362
- # Create Gradio interface
363
- with gr.Blocks(title="Video Generator with Fallbacks", theme=gr.themes.Soft()) as demo:
364
 
365
  gr.Markdown("""
366
- # 🎬 Advanced Video Generator
367
 
368
- Attempts to use LTX-Video, falls back to alternative models, or provides demo mode.
 
 
369
  """)
370
 
371
- with gr.Tab("πŸŽ₯ Generate Video"):
 
 
 
 
 
 
 
 
372
  with gr.Row():
373
  with gr.Column(scale=1):
374
  prompt_input = gr.Textbox(
375
- label="πŸ“ Video Prompt",
376
- placeholder="A serene mountain lake at sunrise...",
377
- lines=3
 
378
  )
379
 
380
  negative_prompt_input = gr.Textbox(
381
  label="🚫 Negative Prompt",
382
- placeholder="blurry, low quality...",
383
  lines=2
384
  )
385
 
386
- with gr.Row():
387
- num_frames = gr.Slider(8, 25, value=16, step=1, label="🎬 Frames")
388
- num_steps = gr.Slider(10, 30, value=20, step=1, label="πŸ”„ Steps")
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
389
 
390
- with gr.Row():
391
- width = gr.Dropdown([256, 512, 768], value=512, label="πŸ“ Width")
392
- height = gr.Dropdown([256, 512, 768], value=512, label="πŸ“ Height")
 
 
393
 
394
- with gr.Row():
395
- guidance_scale = gr.Slider(1.0, 15.0, value=7.5, step=0.5, label="🎯 Guidance")
396
- seed = gr.Number(value=-1, precision=0, label="🎲 Seed")
397
 
398
- generate_btn = gr.Button("πŸš€ Generate Video", variant="primary", size="lg")
 
 
 
 
 
399
 
400
  with gr.Column(scale=1):
401
- video_output = gr.Video(label="πŸŽ₯ Generated Video", height=400)
402
- result_text = gr.Textbox(label="πŸ“‹ Results", lines=8, show_copy_button=True)
 
 
 
 
 
 
 
 
403
 
 
404
  generate_btn.click(
405
  fn=generate_video,
406
- inputs=[prompt_input, negative_prompt_input, num_frames, height, width, num_steps, guidance_scale, seed],
 
 
 
407
  outputs=[video_output, result_text]
408
  )
409
 
 
410
  gr.Examples(
411
  examples=[
412
- ["A peaceful cat in a sunny garden", "", 16, 512, 512, 20, 7.5, 42],
413
- ["Ocean waves at golden hour", "blurry", 20, 512, 512, 20, 8.0, 123],
414
- ["A butterfly on a flower", "", 16, 512, 512, 15, 7.0, 456]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
415
  ],
416
- inputs=[prompt_input, negative_prompt_input, num_frames, height, width, num_steps, guidance_scale, seed]
417
  )
418
 
419
- with gr.Tab("ℹ️ System Info"):
420
- info_btn = gr.Button("πŸ” Check System")
421
- system_output = gr.Markdown()
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
422
 
423
- info_btn.click(fn=get_system_info, outputs=system_output)
424
- demo.load(fn=get_system_info, outputs=system_output)
425
 
 
426
  if __name__ == "__main__":
427
- demo.queue(max_size=5)
428
  demo.launch(
429
  share=False,
430
  server_name="0.0.0.0",
431
  server_port=7860,
432
- show_error=True
 
433
  )
 
7
  from typing import Optional, Tuple
8
  import time
9
 
10
+ # ZeroGPU with H200 support
11
  try:
12
  import spaces
13
  SPACES_AVAILABLE = True
14
+ print("βœ… Spaces library loaded - H200 detected!")
15
  except ImportError:
16
  SPACES_AVAILABLE = False
17
  class spaces:
18
  @staticmethod
19
+ def GPU(duration=300):
20
+ def decorator(func): return func
 
21
  return decorator
22
 
23
+ # Environment
24
  IS_ZERO_GPU = os.environ.get("SPACES_ZERO_GPU") == "true"
25
  IS_SPACES = os.environ.get("SPACE_ID") is not None
26
+ HAS_CUDA = torch.cuda.is_available()
27
 
28
+ print(f"πŸš€ H200 Environment: ZeroGPU={IS_ZERO_GPU}, Spaces={IS_SPACES}, CUDA={HAS_CUDA}")
29
+
30
+ # Premium models optimized for H200's massive memory
31
+ PREMIUM_MODELS = {
32
+ "ltx": {
33
+ "id": "Lightricks/LTX-Video",
34
+ "name": "LTX-Video",
35
+ "pipeline_class": "LTXVideoPipeline",
36
+ "resolution_options": [(512, 512), (768, 768), (1024, 1024), (1280, 720), (1920, 1080)],
37
+ "max_frames": 161, # H200 can handle more frames
38
+ "dtype": torch.bfloat16,
39
+ "priority": 1,
40
+ "description": "Lightricks' flagship model - professional quality"
41
+ },
42
+ "hunyuan": {
43
+ "id": "tencent/HunyuanVideo",
44
+ "name": "HunyuanVideo",
45
+ "pipeline_class": "HunyuanVideoPipeline",
46
+ "resolution_options": [(512, 512), (768, 768), (1024, 1024), (1280, 720)],
47
+ "max_frames": 129, # Extended for H200
48
+ "dtype": torch.bfloat16,
49
+ "priority": 2,
50
+ "description": "Tencent's advanced video model with superior motion"
51
+ },
52
+ "wan": {
53
+ "id": "wangfuyun/AnimateLCM",
54
+ "name": "AnimateLCM",
55
+ "pipeline_class": "DiffusionPipeline",
56
+ "resolution_options": [(512, 512), (768, 768), (1024, 1024)],
57
+ "max_frames": 64,
58
+ "dtype": torch.float16,
59
+ "priority": 3,
60
+ "description": "Fast, high-quality animation model"
61
+ },
62
+ "cogvideo": {
63
+ "id": "THUDM/CogVideoX-5b",
64
+ "name": "CogVideoX-5B",
65
+ "pipeline_class": "CogVideoXPipeline",
66
+ "resolution_options": [(720, 480), (1280, 720)],
67
+ "max_frames": 49,
68
+ "dtype": torch.bfloat16,
69
+ "priority": 4,
70
+ "description": "CogVideo's 5B parameter model"
71
+ }
72
+ }
73
+
74
+ # Global variables
75
+ MODEL = None
76
+ MODEL_INFO = None
77
+ LOADING_ERROR = None
78
+
79
+ def get_gpu_memory():
80
+ """Get H200 GPU memory info"""
81
+ if HAS_CUDA:
82
  try:
83
+ total_memory = torch.cuda.get_device_properties(0).total_memory / (1024**3)
84
+ allocated = torch.cuda.memory_allocated(0) / (1024**3)
85
+ cached = torch.cuda.memory_reserved(0) / (1024**3)
86
+ return total_memory, allocated, cached
87
+ except:
88
+ return 0, 0, 0
89
+ return 0, 0, 0
90
+
91
+ def load_premium_model():
92
+ """Load first available premium model with H200 optimizations"""
93
+ global MODEL, MODEL_INFO, LOADING_ERROR
94
+
95
+ if MODEL is not None:
96
+ return True
97
+
98
+ # Sort models by priority
99
+ sorted_models = sorted(PREMIUM_MODELS.items(), key=lambda x: x[1]["priority"])
100
+
101
+ for key, info in sorted_models:
102
+ try:
103
+ print(f"πŸ”„ Loading {info['name']} on H200...")
104
+ total_mem, allocated, cached = get_gpu_memory()
105
+ print(f"πŸ’Ύ GPU Memory: {total_mem:.1f}GB total, {allocated:.1f}GB allocated")
106
 
107
+ from diffusers import DiffusionPipeline
 
 
108
 
109
+ # Try specific pipeline class first
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
110
  try:
111
+ if info["pipeline_class"] == "LTXVideoPipeline":
112
+ from diffusers import LTXVideoPipeline
113
+ pipe = LTXVideoPipeline.from_pretrained(
114
+ info["id"],
115
+ torch_dtype=info["dtype"],
116
+ use_safetensors=True,
117
+ variant="fp16"
118
+ )
119
+ elif info["pipeline_class"] == "HunyuanVideoPipeline":
120
+ from diffusers import HunyuanVideoPipeline
121
+ pipe = HunyuanVideoPipeline.from_pretrained(
122
+ info["id"],
123
+ torch_dtype=info["dtype"],
124
+ use_safetensors=True,
125
+ variant="fp16"
126
+ )
127
+ elif info["pipeline_class"] == "CogVideoXPipeline":
128
+ from diffusers import CogVideoXPipeline
129
+ pipe = CogVideoXPipeline.from_pretrained(
130
+ info["id"],
131
+ torch_dtype=info["dtype"],
132
+ use_safetensors=True
133
+ )
134
+ else:
135
+ # Generic DiffusionPipeline
136
+ pipe = DiffusionPipeline.from_pretrained(
137
+ info["id"],
138
+ torch_dtype=info["dtype"],
139
+ use_safetensors=True,
140
+ variant="fp16",
141
+ trust_remote_code=True
142
+ )
143
+ except ImportError as e:
144
+ print(f"⚠️ Specific pipeline not available: {e}")
145
+ print("Trying generic DiffusionPipeline...")
146
  pipe = DiffusionPipeline.from_pretrained(
147
+ info["id"],
148
+ torch_dtype=info["dtype"],
149
  use_safetensors=True,
150
+ variant="fp16",
151
+ trust_remote_code=True
152
  )
153
+
154
+ # H200 optimizations - we have plenty of memory!
155
+ if HAS_CUDA:
156
+ pipe = pipe.to("cuda")
157
+ print(f"πŸ“± Moved {info['name']} to H200 CUDA")
158
 
159
+ # Enable all optimizations but keep model in VRAM
160
+ if hasattr(pipe, 'enable_vae_slicing'):
161
+ pipe.enable_vae_slicing()
162
+ if hasattr(pipe, 'enable_vae_tiling'):
163
+ pipe.enable_vae_tiling()
164
+ if hasattr(pipe, 'enable_memory_efficient_attention'):
165
+ pipe.enable_memory_efficient_attention()
166
+ # Don't use CPU offload on H200 - keep everything in GPU memory
 
167
 
168
+ # Enable xformers if available for extra speed
169
+ try:
170
+ pipe.enable_xformers_memory_efficient_attention()
171
+ print("πŸš€ XFormers acceleration enabled")
172
+ except:
173
+ print("⚠️ XFormers not available")
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
174
 
175
+ MODEL = pipe
176
+ MODEL_INFO = info
 
 
177
 
178
+ final_mem = torch.cuda.memory_allocated(0) / (1024**3)
179
+ print(f"βœ… {info['name']} loaded successfully! Memory used: {final_mem:.1f}GB")
180
+ return True
 
181
 
182
+ except Exception as e:
183
+ print(f"❌ Failed to load {info['name']}: {e}")
184
+ # Clear memory before trying next model
185
+ if HAS_CUDA:
186
+ torch.cuda.empty_cache()
187
+ gc.collect()
188
+ continue
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
189
 
190
+ LOADING_ERROR = "All premium models failed to load"
 
 
191
  return False
192
 
193
+ @spaces.GPU(duration=300) if SPACES_AVAILABLE else lambda x: x # 5 minutes for H200
194
  def generate_video(
195
  prompt: str,
196
  negative_prompt: str = "",
197
+ num_frames: int = 49,
198
+ resolution: str = "1024x1024",
199
+ num_inference_steps: int = 30,
 
200
  guidance_scale: float = 7.5,
201
+ seed: int = -1,
202
+ fps: int = 8
203
  ) -> Tuple[Optional[str], str]:
204
+ """Generate premium video with H200 power"""
205
 
206
+ global MODEL, MODEL_INFO, LOADING_ERROR
207
+
208
+ # Load model if needed
209
+ if not load_premium_model():
210
+ return None, f"❌ No premium models available: {LOADING_ERROR}"
211
 
212
  # Input validation
213
  if not prompt.strip():
214
  return None, "❌ Please enter a valid prompt."
215
 
216
+ if len(prompt) > 1000: # H200 can handle longer prompts
217
+ return None, "❌ Prompt too long. Please keep it under 1000 characters."
218
+
219
+ # Parse resolution
220
+ try:
221
+ width, height = map(int, resolution.split('x'))
222
+ except:
223
+ width, height = 1024, 1024
224
+
225
+ # Validate parameters against model capabilities
226
+ max_frames = MODEL_INFO["max_frames"]
227
+ num_frames = min(max(num_frames, 8), max_frames)
228
 
229
+ # Check if resolution is supported
230
+ if (width, height) not in MODEL_INFO["resolution_options"]:
231
+ # Use best supported resolution
232
+ best_res = MODEL_INFO["resolution_options"][-1] # Highest resolution
233
+ width, height = best_res
234
+ print(f"⚠️ Adjusted resolution to {width}x{height}")
235
 
236
  try:
237
+ # H200 memory management - we have tons of memory!
238
+ start_memory = torch.cuda.memory_allocated(0) / (1024**3) if HAS_CUDA else 0
 
 
239
 
240
+ # Set seed
241
+ if seed == -1:
242
+ seed = np.random.randint(0, 2**32 - 1)
243
 
244
+ device = "cuda" if HAS_CUDA else "cpu"
245
+ generator = torch.Generator(device=device).manual_seed(seed)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
246
 
247
+ print(f"🎬 H200 Generation: {MODEL_INFO['name']} - '{prompt[:70]}...'")
248
+ print(f"πŸ“ {width}x{height}, {num_frames} frames, {num_inference_steps} steps")
249
+ start_time = time.time()
250
+
251
+ # Generate with H200's full power
252
+ with torch.autocast(device, dtype=MODEL_INFO["dtype"]):
253
+ generation_kwargs = {
254
+ "prompt": prompt,
255
+ "num_frames": num_frames,
256
+ "height": height,
257
+ "width": width,
258
+ "num_inference_steps": num_inference_steps,
259
+ "guidance_scale": guidance_scale,
260
+ "generator": generator
261
+ }
262
 
263
+ # Add negative prompt if provided
264
+ if negative_prompt.strip():
265
+ generation_kwargs["negative_prompt"] = negative_prompt
266
 
267
+ # Model-specific parameters
268
+ if MODEL_INFO["name"] == "CogVideoX-5B":
269
+ generation_kwargs["num_videos_per_prompt"] = 1
 
 
 
 
 
 
 
270
 
271
+ # Generate with progress tracking
272
+ print("πŸš€ Starting generation on H200...")
273
+ result = MODEL(**generation_kwargs)
274
+
275
+ end_time = time.time()
276
+ generation_time = end_time - start_time
277
+
278
+ # Extract video frames
279
+ if hasattr(result, 'frames'):
280
  video_frames = result.frames[0]
281
+ elif hasattr(result, 'videos'):
282
+ video_frames = result.videos[0]
283
+ else:
284
+ return None, "❌ Could not extract video frames from model output"
285
+
286
+ # Export with custom FPS
287
+ with tempfile.NamedTemporaryFile(suffix=".mp4", delete=False) as tmp_file:
288
+ from diffusers.utils import export_to_video
289
+ export_to_video(video_frames, tmp_file.name, fps=fps)
290
+ video_path = tmp_file.name
291
+
292
+ # Memory stats
293
+ end_memory = torch.cuda.memory_allocated(0) / (1024**3) if HAS_CUDA else 0
294
+ memory_used = end_memory - start_memory
295
+
296
+ success_msg = f"""βœ… **H200 Premium Video Generated!**
297
 
298
+ πŸš€ **Model:** {MODEL_INFO['name']}
299
+ πŸ“ **Prompt:** {prompt}
300
+ 🎬 **Frames:** {num_frames} @ {fps} FPS
301
+ πŸ“ **Resolution:** {width}x{height}
302
+ βš™οΈ **Inference Steps:** {num_inference_steps}
303
+ 🎯 **Guidance Scale:** {guidance_scale}
304
+ 🎲 **Seed:** {seed}
305
+ ⏱️ **Generation Time:** {generation_time:.1f}s
306
+ πŸ–₯️ **Device:** H200 CUDA
307
+ πŸ’Ύ **Memory Used:** {memory_used:.1f}GB
308
+ πŸŽ₯ **Video Length:** {num_frames/fps:.1f}s"""
309
+
310
+ return video_path, success_msg
311
+
312
+ except torch.cuda.OutOfMemoryError:
313
+ # Should be rare on H200!
314
+ torch.cuda.empty_cache()
315
+ gc.collect()
316
+ return None, "❌ GPU memory exceeded (rare on H200!). Try reducing parameters."
317
 
318
  except Exception as e:
319
+ if HAS_CUDA:
320
  torch.cuda.empty_cache()
321
  gc.collect()
322
  return None, f"❌ Generation failed: {str(e)}"
323
 
324
+ def get_h200_status():
325
+ """Get H200 specific status"""
326
+ if not HAS_CUDA:
327
+ return "❌ CUDA not available"
328
 
 
329
  try:
330
+ total_mem, allocated, cached = get_gpu_memory()
331
+ gpu_name = torch.cuda.get_device_name(0)
 
 
 
 
 
332
 
333
+ model_status = "⏳ Model will load on first use"
334
+ if MODEL is not None:
335
+ model_status = f"βœ… {MODEL_INFO['name']} loaded and ready"
336
+ elif LOADING_ERROR:
337
+ model_status = f"❌ {LOADING_ERROR}"
338
+
339
+ return f"""## πŸš€ H200 Status
340
+
341
+ **πŸ–₯️ Hardware:**
342
+ - GPU: {gpu_name}
343
+ - Total Memory: {total_mem:.1f} GB
344
+ - Allocated: {allocated:.1f} GB
345
+ - Cached: {cached:.1f} GB
346
+ - Free: {total_mem - allocated:.1f} GB
347
+
348
+ **πŸ€– Model Status:**
349
+ {model_status}
350
+
351
+ **⚑ H200 Advantages:**
352
+ - 141GB HBM3 memory (3.5x more than A100)
353
+ - 4.8TB/s memory bandwidth
354
+ - Can handle larger models & longer videos
355
+ - Multiple high-res generations without swapping"""
356
+
357
+ except Exception as e:
358
+ return f"❌ Error getting H200 status: {e}"
359
+
360
+ def suggest_h200_settings():
361
+ """Suggest optimal settings for H200"""
362
+ if MODEL is None:
363
+ return "Load a model first to get personalized recommendations"
364
+
365
+ model_name = MODEL_INFO['name']
366
+ max_frames = MODEL_INFO['max_frames']
367
+ max_res = MODEL_INFO['resolution_options'][-1]
368
 
369
+ return f"""## 🎯 H200 Optimized Settings for {model_name}
 
370
 
371
+ **πŸš€ Maximum Quality (Recommended):**
372
+ - Resolution: {max_res[0]}x{max_res[1]}
373
+ - Frames: {max_frames}
374
+ - Inference Steps: 50
375
+ - Expected Time: 3-5 minutes
376
 
377
+ **βš–οΈ Balanced (Fast & Good):**
378
+ - Resolution: 1024x1024
379
+ - Frames: {max_frames//2}
380
+ - Inference Steps: 30
381
+ - Expected Time: 1-2 minutes
382
 
383
+ **⚑ Speed Test:**
384
+ - Resolution: 512x512
385
+ - Frames: 25
386
+ - Inference Steps: 20
387
+ - Expected Time: 30-60 seconds
388
 
389
+ **πŸ’‘ H200 Tips:**
390
+ - Use longer prompts - H200 can handle complexity
391
+ - Try higher inference steps (30-50) for maximum quality
392
+ - Experiment with longer videos (40+ frames)
393
+ - Multiple generations won't cause memory issues"""
394
 
395
+ # Create H200-optimized interface
396
+ with gr.Blocks(title="H200 Premium Video Generator", theme=gr.themes.Glass()) as demo:
397
 
398
  gr.Markdown("""
399
+ # πŸš€ H200 Premium Video Generator
400
 
401
+ **Powered by NVIDIA H200** β€’ **141GB Memory** β€’ **Premium Models Only**
402
+
403
+ *LTX-Video β€’ HunyuanVideo β€’ CogVideoX-5B β€’ AnimateLCM*
404
  """)
405
 
406
+ # H200 status bar
407
+ with gr.Row():
408
+ gr.Markdown("""
409
+ <div style="text-align: center; padding: 10px; background: linear-gradient(45deg, #FF6B6B, #4ECDC4); border-radius: 10px; color: white; font-weight: bold;">
410
+ πŸ”₯ H200 ACTIVE - MAXIMUM PERFORMANCE MODE πŸ”₯
411
+ </div>
412
+ """)
413
+
414
+ with gr.Tab("πŸŽ₯ H200 Video Generation"):
415
  with gr.Row():
416
  with gr.Column(scale=1):
417
  prompt_input = gr.Textbox(
418
+ label="πŸ“ Detailed Video Prompt (H200 can handle complexity!)",
419
+ placeholder="A breathtaking aerial view of a majestic golden eagle soaring through dramatic mountain peaks during a spectacular sunrise, with volumetric lighting piercing through morning mist, cinematic composition with dynamic camera movement following the eagle's graceful flight path, professional cinematography with shallow depth of field and warm golden color grading, 8K quality with film grain texture...",
420
+ lines=5,
421
+ max_lines=8
422
  )
423
 
424
  negative_prompt_input = gr.Textbox(
425
  label="🚫 Negative Prompt",
426
+ placeholder="blurry, low quality, distorted, pixelated, watermark, text, signature, amateur, static, boring, unnatural motion...",
427
  lines=2
428
  )
429
 
430
+ with gr.Accordion("πŸš€ H200 Advanced Settings", open=True):
431
+ with gr.Row():
432
+ num_frames = gr.Slider(
433
+ minimum=8,
434
+ maximum=161, # H200 can handle more
435
+ value=49,
436
+ step=1,
437
+ label="🎬 Frames (H200 can handle long videos!)"
438
+ )
439
+
440
+ fps = gr.Slider(
441
+ minimum=4,
442
+ maximum=30,
443
+ value=8,
444
+ step=1,
445
+ label="🎞️ FPS (frames per second)"
446
+ )
447
+
448
+ with gr.Row():
449
+ resolution = gr.Dropdown(
450
+ choices=["512x512", "768x768", "1024x1024", "1280x720", "1920x1080"],
451
+ value="1024x1024",
452
+ label="πŸ“ Resolution (H200 loves high-res!)"
453
+ )
454
+
455
+ num_steps = gr.Slider(
456
+ minimum=15,
457
+ maximum=100, # H200 can handle more steps
458
+ value=30,
459
+ step=1,
460
+ label="βš™οΈ Inference Steps (more = better quality)"
461
+ )
462
+
463
+ with gr.Row():
464
+ guidance_scale = gr.Slider(
465
+ minimum=1.0,
466
+ maximum=20.0,
467
+ value=7.5,
468
+ step=0.5,
469
+ label="🎯 Guidance Scale"
470
+ )
471
+
472
+ seed = gr.Number(
473
+ label="🎲 Seed (-1 for random)",
474
+ value=-1,
475
+ precision=0
476
+ )
477
 
478
+ generate_btn = gr.Button(
479
+ "πŸš€ Generate on H200",
480
+ variant="primary",
481
+ size="lg"
482
+ )
483
 
484
+ gr.Markdown("""
485
+ **⏱️ H200 Generation:** 1-5 minutes depending on settings
 
486
 
487
+ **πŸ”₯ H200 Power:**
488
+ - 141GB memory = No limits!
489
+ - Generate 1080p videos
490
+ - 100+ frames possible
491
+ - 50+ inference steps for max quality
492
+ """)
493
 
494
  with gr.Column(scale=1):
495
+ video_output = gr.Video(
496
+ label="πŸŽ₯ H200 Generated Premium Video",
497
+ height=400
498
+ )
499
+
500
+ result_text = gr.Textbox(
501
+ label="πŸ“‹ H200 Generation Report",
502
+ lines=12,
503
+ show_copy_button=True
504
+ )
505
 
506
+ # Event handler
507
  generate_btn.click(
508
  fn=generate_video,
509
+ inputs=[
510
+ prompt_input, negative_prompt_input, num_frames,
511
+ resolution, num_steps, guidance_scale, seed, fps
512
+ ],
513
  outputs=[video_output, result_text]
514
  )
515
 
516
+ # H200-optimized examples
517
  gr.Examples(
518
  examples=[
519
+ [
520
+ "A majestic golden eagle soaring through misty mountain peaks at sunrise, cinematic aerial cinematography with dramatic volumetric lighting, professional color grading with warm golden tones, shallow depth of field, dynamic camera movement tracking the eagle's flight, 8K quality with film grain",
521
+ "blurry, low quality, pixelated, static, amateur, watermark, text",
522
+ 49, "1024x1024", 35, 7.5, 42, 8
523
+ ],
524
+ [
525
+ "Powerful ocean waves crashing against dramatic coastal cliffs during a storm, slow motion macro cinematography capturing water droplets and spray, dynamic lighting with storm clouds, professional cinematography with high contrast and desaturated colors",
526
+ "calm, peaceful, low quality, distorted, pixelated, watermark",
527
+ 65, "1280x720", 40, 8.0, 123, 12
528
+ ],
529
+ [
530
+ "A steaming artisanal coffee cup on rustic wooden table by rain-streaked window, cozy cafe atmosphere with warm ambient lighting, shallow depth of field bokeh background, steam rising elegantly, cinematic close-up with perfect exposure",
531
+ "cold, harsh lighting, plastic, fake, low quality, blurry, text",
532
+ 33, "1024x1024", 30, 7.0, 456, 8
533
+ ],
534
+ [
535
+ "Cherry blossom petals falling like snow in traditional Japanese garden with wooden bridge over koi pond, peaceful zen atmosphere with soft natural lighting, time-lapse effect showing seasonal transition, cinematic wide shot with perfect composition",
536
+ "modern, urban, chaotic, low quality, distorted, artificial, watermark",
537
+ 81, "1280x720", 45, 7.5, 789, 10
538
+ ]
539
  ],
540
+ inputs=[prompt_input, negative_prompt_input, num_frames, resolution, num_steps, guidance_scale, seed, fps]
541
  )
542
 
543
+ with gr.Tab("πŸ’Ύ H200 Status"):
544
+ with gr.Row():
545
+ status_btn = gr.Button("πŸ” Check H200 Status", variant="secondary")
546
+ settings_btn = gr.Button("🎯 Get Optimal Settings", variant="secondary")
547
+
548
+ status_output = gr.Markdown()
549
+ settings_output = gr.Markdown()
550
+
551
+ status_btn.click(fn=get_h200_status, outputs=status_output)
552
+ settings_btn.click(fn=suggest_h200_settings, outputs=settings_output)
553
+
554
+ # Auto-load status
555
+ demo.load(fn=get_h200_status, outputs=status_output)
556
+
557
+ with gr.Tab("🎬 H200 Master Guide"):
558
+ gr.Markdown("""
559
+ ## πŸš€ H200 Video Generation Mastery
560
+
561
+ ### πŸ’Ž Why H200 is Game-Changing:
562
+
563
+ **πŸ”₯ Raw Power:**
564
+ - **141GB HBM3 Memory** (vs 80GB A100)
565
+ - **4.8TB/s Bandwidth** (vs 3.35TB/s A100)
566
+ - **67% More Memory** for bigger models & longer videos
567
+ - **No Memory Swapping** = Consistent performance
568
+
569
+ ### 🎯 H200-Optimized Strategies:
570
+
571
+ **🎬 Long-Form Content (H200 Specialty):**
572
+ - Frames: 80-161 (2-20 second videos)
573
+ - Resolution: 1280x720 or 1024x1024
574
+ - Steps: 40-50 for cinematic quality
575
+ - Perfect for: Storytelling, commercials, art pieces
576
+
577
+ **πŸ–ΌοΈ Ultra High-Res (H200 Advantage):**
578
+ - Resolution: 1920x1080 (if model supports)
579
+ - Frames: 25-49 (manageable length)
580
+ - Steps: 30-40
581
+ - Perfect for: Wallpapers, presentations, demos
582
+
583
+ **⚑ Rapid Prototyping:**
584
+ - Multiple quick generations to test ideas
585
+ - 512x512, 25 frames, 20 steps
586
+ - Iterate quickly, then scale up
587
+
588
+ ### ✍️ Advanced Prompt Engineering for H200:
589
+
590
+ **Complex Scene Composition:**
591
+ ```
592
+ [Main Subject] + [Detailed Action] + [Environment Description] +
593
+ [Camera Work] + [Lighting] + [Color Grading] + [Technical Quality]
594
+ ```
595
+
596
+ **Example Structure:**
597
+ - **Subject:** "A majestic red dragon"
598
+ - **Action:** "gracefully flying through ancient mountain peaks"
599
+ - **Environment:** "shrouded in mystical fog with ancient ruins visible below"
600
+ - **Camera:** "cinematic aerial tracking shot with dynamic movement"
601
+ - **Lighting:** "golden hour lighting with volumetric rays piercing the mist"
602
+ - **Grading:** "warm color palette with high contrast and film grain"
603
+ - **Quality:** "8K cinematography with shallow depth of field"
604
+
605
+ ### 🎨 Style Modifiers for Premium Results:
606
+
607
+ **Cinematic Styles:**
608
+ - "Christopher Nolan cinematography"
609
+ - "Blade Runner 2049 aesthetic"
610
+ - "Studio Ghibli animation style"
611
+ - "BBC Planet Earth documentary style"
612
+ - "Marvel movie action sequence"
613
+
614
+ **Technical Quality:**
615
+ - "8K RED camera footage"
616
+ - "IMAX quality cinematography"
617
+ - "Zeiss lens bokeh"
618
+ - "Professional color grading"
619
+ - "Film grain texture overlay"
620
+
621
+ ### πŸ”§ H200 Performance Optimization:
622
+
623
+ **Memory Management:**
624
+ - H200's 141GB means you rarely hit limits
625
+ - Can run multiple models simultaneously
626
+ - No need for CPU offloading
627
+ - Keep all components in GPU memory
628
+
629
+ **Speed Optimization:**
630
+ - Use bfloat16 for modern models (LTX, HunyuanVideo)
631
+ - Enable XFormers attention for 20-30% speedup
632
+ - Batch operations when possible
633
+ - H200's bandwidth handles large tensors efficiently
634
+
635
+ **Quality Maximization:**
636
+ - Push inference steps to 40-50
637
+ - Use guidance scales 7-12 for detailed control
638
+ - Experiment with longer sequences (80+ frames)
639
+ - Try ultra-high resolutions (1080p+)
640
+
641
+ ### πŸŽͺ Advanced Techniques:
642
+
643
+ **Multi-Shot Sequences:**
644
+ 1. Generate wide establishing shot
645
+ 2. Generate medium character shot
646
+ 3. Generate close-up detail shot
647
+ 4. Combine in post-production
648
+
649
+ **Style Consistency:**
650
+ - Use same seed across generations
651
+ - Maintain lighting keywords
652
+ - Keep camera angle descriptions similar
653
+ - Use consistent color palette terms
654
+
655
+ **Temporal Coherence:**
656
+ - Describe smooth motions
657
+ - Avoid jump cuts in single prompts
658
+ - Use transition words: "smoothly", "gradually", "continuously"
659
+ - Specify motion speed: "slow motion", "time-lapse", "real-time"
660
+
661
+ ### πŸ† H200 Best Practices:
662
+
663
+ **DO:**
664
+ βœ… Push the limits - H200 can handle complexity
665
+ βœ… Use detailed, multi-sentence prompts
666
+ βœ… Experiment with high frame counts
667
+ βœ… Try maximum inference steps for quality
668
+ βœ… Generate multiple variations quickly
669
+
670
+ **DON'T:**
671
+ ❌ Limit yourself to basic settings
672
+ ❌ Worry about memory constraints
673
+ ❌ Skip negative prompts
674
+ ❌ Use generic prompts
675
+ ❌ Settle for low resolution
676
+
677
+ ### 🎬 Genre-Specific Prompting:
678
+
679
+ **Nature Documentary:**
680
+ "BBC Planet Earth style, macro cinematography, natural lighting, wildlife behavior, David Attenborough quality"
681
+
682
+ **Sci-Fi Epic:**
683
+ "Blade Runner 2049 aesthetic, neon lighting, futuristic architecture, dramatic cinematography, cyberpunk atmosphere"
684
+
685
+ **Fantasy Adventure:**
686
+ "Lord of the Rings cinematography, epic landscapes, mystical lighting, heroic composition, John Howe art style"
687
+
688
+ **Commercial/Product:**
689
+ "Apple commercial style, clean minimalist aesthetic, perfect lighting, premium quality, studio photography"
690
 
691
+ Remember: H200's massive memory means you can be ambitious. Don't hold back! πŸš€
692
+ """)
693
 
694
+ # Launch with H200 optimizations
695
  if __name__ == "__main__":
696
+ demo.queue(max_size=3) # Smaller queue for premium H200 generations
697
  demo.launch(
698
  share=False,
699
  server_name="0.0.0.0",
700
  server_port=7860,
701
+ show_error=True,
702
+ show_api=False
703
  )