Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -3,86 +3,50 @@ import torch
|
|
3 |
import os
|
4 |
import gc
|
5 |
import numpy as np
|
6 |
-
from PIL import Image
|
7 |
import tempfile
|
8 |
from typing import Optional, Tuple
|
9 |
import time
|
10 |
|
11 |
-
#
|
12 |
-
|
13 |
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
gpu_memory = 0
|
18 |
-
if gpu_available:
|
19 |
-
gpu_memory = torch.cuda.get_device_properties(0).total_memory / (1024**3)
|
20 |
-
|
21 |
-
return {
|
22 |
-
"gpu_available": gpu_available,
|
23 |
-
"gpu_memory": gpu_memory,
|
24 |
-
"is_spaces": IS_SPACES
|
25 |
-
}
|
26 |
|
27 |
-
def
|
28 |
-
"""Load LTX-Video model
|
29 |
try:
|
30 |
from diffusers import LTXVideoPipeline
|
31 |
-
from diffusers.utils import export_to_video
|
32 |
-
|
33 |
-
system_info = check_system()
|
34 |
|
35 |
-
|
36 |
-
model_id = "Lightricks/LTX-Video"
|
37 |
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
variant="fp16"
|
44 |
-
).to("cuda")
|
45 |
-
device = "cuda"
|
46 |
-
dtype = torch.bfloat16
|
47 |
-
elif system_info["gpu_available"] and system_info["gpu_memory"] > 6:
|
48 |
-
# Mid-range GPU setup with optimizations
|
49 |
-
pipe = LTXVideoPipeline.from_pretrained(
|
50 |
-
model_id,
|
51 |
-
torch_dtype=torch.float16,
|
52 |
-
variant="fp16",
|
53 |
-
low_cpu_mem_usage=True
|
54 |
-
).to("cuda")
|
55 |
-
device = "cuda"
|
56 |
-
dtype = torch.float16
|
57 |
-
else:
|
58 |
-
# CPU fallback or low memory GPU
|
59 |
-
pipe = LTXVideoPipeline.from_pretrained(
|
60 |
-
model_id,
|
61 |
-
torch_dtype=torch.float32,
|
62 |
-
low_cpu_mem_usage=True
|
63 |
-
)
|
64 |
-
device = "cpu"
|
65 |
-
dtype = torch.float32
|
66 |
-
|
67 |
-
# Enable memory efficient attention if available
|
68 |
-
if hasattr(pipe, "enable_memory_efficient_attention"):
|
69 |
-
pipe.enable_memory_efficient_attention()
|
70 |
|
71 |
-
#
|
72 |
-
if
|
73 |
-
pipe.
|
|
|
|
|
|
|
|
|
|
|
74 |
|
75 |
-
|
|
|
76 |
|
77 |
-
except ImportError:
|
78 |
-
return None, "cpu", torch.float32, {"error": "diffusers library not installed or LTX model not available"}
|
79 |
except Exception as e:
|
80 |
-
|
|
|
81 |
|
82 |
-
#
|
83 |
-
|
84 |
-
PIPE, DEVICE, DTYPE, SYSTEM_INFO = load_ltx_model()
|
85 |
|
|
|
86 |
def generate_video(
|
87 |
prompt: str,
|
88 |
negative_prompt: str = "",
|
@@ -93,49 +57,48 @@ def generate_video(
|
|
93 |
guidance_scale: float = 7.5,
|
94 |
seed: int = -1
|
95 |
) -> Tuple[Optional[str], str]:
|
96 |
-
"""Generate video using LTX-Video
|
|
|
|
|
97 |
|
98 |
-
if
|
99 |
-
|
100 |
-
|
|
|
|
|
|
|
101 |
|
102 |
# Input validation
|
103 |
if not prompt.strip():
|
104 |
return None, "❌ Please enter a valid prompt."
|
105 |
|
106 |
-
if len(prompt) >
|
107 |
-
return None, "❌ Prompt too long. Please keep it under
|
108 |
|
109 |
-
#
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
width = min(width, 256)
|
115 |
-
elif SYSTEM_INFO.get("gpu_memory", 0) < 8:
|
116 |
-
num_frames = min(num_frames, 20)
|
117 |
-
height = min(height, 512)
|
118 |
-
width = min(width, 512)
|
119 |
|
120 |
try:
|
121 |
-
# Clear cache
|
122 |
-
|
123 |
-
torch.cuda.empty_cache()
|
124 |
gc.collect()
|
125 |
|
126 |
# Set seed for reproducibility
|
127 |
generator = None
|
128 |
-
if seed
|
129 |
-
generator = torch.Generator(device=DEVICE).manual_seed(seed)
|
130 |
-
else:
|
131 |
seed = np.random.randint(0, 2**32 - 1)
|
132 |
-
generator = torch.Generator(device=DEVICE).manual_seed(seed)
|
133 |
|
|
|
|
|
|
|
134 |
start_time = time.time()
|
135 |
|
136 |
# Generate video
|
137 |
-
with torch.autocast(
|
138 |
-
result =
|
139 |
prompt=prompt,
|
140 |
negative_prompt=negative_prompt if negative_prompt else None,
|
141 |
num_frames=num_frames,
|
@@ -143,136 +106,159 @@ def generate_video(
|
|
143 |
width=width,
|
144 |
num_inference_steps=num_inference_steps,
|
145 |
guidance_scale=guidance_scale,
|
146 |
-
generator=generator
|
147 |
)
|
148 |
|
149 |
end_time = time.time()
|
150 |
generation_time = end_time - start_time
|
151 |
|
152 |
-
#
|
153 |
video_frames = result.frames[0]
|
154 |
|
155 |
with tempfile.NamedTemporaryFile(suffix=".mp4", delete=False) as tmp_file:
|
156 |
-
#
|
157 |
from diffusers.utils import export_to_video
|
158 |
export_to_video(video_frames, tmp_file.name, fps=8)
|
159 |
video_path = tmp_file.name
|
160 |
|
|
|
|
|
|
|
|
|
161 |
success_msg = f"""
|
162 |
-
✅ Video generated successfully!
|
163 |
|
164 |
📝 Prompt: {prompt}
|
165 |
🎬 Frames: {num_frames}
|
166 |
-
📐 Resolution: {width}x{height}
|
167 |
-
⚙️ Steps: {num_inference_steps}
|
168 |
-
🎯 Guidance: {guidance_scale}
|
169 |
🎲 Seed: {seed}
|
170 |
⏱️ Generation Time: {generation_time:.1f}s
|
171 |
-
🖥️
|
172 |
"""
|
173 |
|
174 |
return video_path, success_msg
|
175 |
|
176 |
except torch.cuda.OutOfMemoryError:
|
177 |
-
|
|
|
|
|
|
|
178 |
except Exception as e:
|
|
|
|
|
179 |
return None, f"❌ Generation failed: {str(e)}"
|
180 |
|
181 |
def get_system_info():
|
182 |
-
"""Get
|
183 |
-
|
184 |
-
|
|
|
185 |
|
186 |
-
|
187 |
-
|
188 |
-
- GPU Memory: {SYSTEM_INFO.get('gpu_memory', 0):.1f} GB
|
189 |
-
- Device: {DEVICE}
|
190 |
-
- Data Type: {DTYPE}
|
191 |
|
192 |
**Environment:**
|
|
|
193 |
- Hugging Face Spaces: {'✅' if IS_SPACES else '❌'}
|
194 |
-
-
|
|
|
|
|
195 |
|
196 |
**Model Status:**
|
197 |
-
- LTX-Video
|
198 |
-
"""
|
199 |
-
|
200 |
-
if "error" in SYSTEM_INFO:
|
201 |
-
info += f"\n**Error:** {SYSTEM_INFO['error']}"
|
202 |
|
203 |
-
|
|
|
|
|
|
|
|
|
|
|
204 |
|
205 |
# Create Gradio interface
|
206 |
-
with gr.Blocks(title="LTX-Video
|
207 |
|
208 |
gr.Markdown("""
|
209 |
-
#
|
|
|
|
|
210 |
|
211 |
-
|
212 |
""")
|
213 |
|
|
|
|
|
|
|
|
|
|
|
214 |
with gr.Tab("🎥 Generate Video"):
|
215 |
with gr.Row():
|
216 |
with gr.Column(scale=1):
|
217 |
prompt_input = gr.Textbox(
|
218 |
label="📝 Video Prompt",
|
219 |
-
placeholder="A serene lake
|
220 |
lines=3,
|
221 |
max_lines=5
|
222 |
)
|
223 |
|
224 |
negative_prompt_input = gr.Textbox(
|
225 |
label="🚫 Negative Prompt (Optional)",
|
226 |
-
placeholder="blurry, low quality, distorted...",
|
227 |
lines=2
|
228 |
)
|
229 |
|
230 |
-
with gr.
|
231 |
-
|
232 |
-
|
233 |
-
|
234 |
-
|
235 |
-
|
236 |
-
|
237 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
238 |
|
239 |
-
|
240 |
-
|
241 |
-
|
242 |
-
|
243 |
-
|
244 |
-
|
245 |
-
|
246 |
-
|
247 |
-
|
248 |
-
|
249 |
-
|
250 |
-
|
251 |
-
label="📐 Width"
|
252 |
-
)
|
253 |
|
254 |
-
|
255 |
-
|
256 |
-
|
257 |
-
|
258 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
259 |
|
260 |
-
|
261 |
-
guidance_scale = gr.Slider(
|
262 |
-
minimum=1.0,
|
263 |
-
maximum=20.0,
|
264 |
-
value=7.5,
|
265 |
-
step=0.5,
|
266 |
-
label="🎯 Guidance Scale"
|
267 |
-
)
|
268 |
-
|
269 |
-
seed = gr.Number(
|
270 |
-
label="🎲 Seed (-1 for random)",
|
271 |
-
value=-1,
|
272 |
-
precision=0
|
273 |
-
)
|
274 |
|
275 |
-
|
|
|
|
|
276 |
|
277 |
with gr.Column(scale=1):
|
278 |
video_output = gr.Video(
|
@@ -299,63 +285,55 @@ with gr.Blocks(title="LTX-Video Generator", theme=gr.themes.Soft()) as demo:
|
|
299 |
# Example prompts
|
300 |
gr.Examples(
|
301 |
examples=[
|
302 |
-
["A majestic
|
303 |
-
["
|
304 |
-
["
|
305 |
-
["
|
306 |
],
|
307 |
inputs=[prompt_input, negative_prompt_input, num_frames, height, width, num_steps, guidance_scale, seed]
|
308 |
)
|
309 |
|
310 |
with gr.Tab("ℹ️ System Info"):
|
311 |
-
|
312 |
-
info_btn = gr.Button("🔍 Check System Status", variant="secondary")
|
313 |
-
|
314 |
system_output = gr.Markdown()
|
315 |
|
316 |
-
info_btn.click(
|
317 |
-
|
318 |
-
outputs=system_output
|
319 |
-
)
|
320 |
-
|
321 |
-
# Initial system info display
|
322 |
-
demo.load(
|
323 |
-
fn=get_system_info,
|
324 |
-
outputs=system_output
|
325 |
-
)
|
326 |
|
327 |
-
with gr.Tab("📚
|
328 |
gr.Markdown("""
|
329 |
-
##
|
|
|
|
|
330 |
|
331 |
-
|
332 |
-
-
|
333 |
-
-
|
334 |
-
-
|
335 |
-
-
|
336 |
|
337 |
-
|
338 |
-
|
339 |
-
|
340 |
-
|
341 |
-
- **Resolution:** Start with 512x512 for faster results
|
342 |
|
343 |
-
|
344 |
-
-
|
345 |
-
-
|
346 |
-
-
|
347 |
|
348 |
-
|
349 |
-
-
|
350 |
-
-
|
|
|
351 |
""")
|
352 |
|
353 |
-
# Launch
|
354 |
if __name__ == "__main__":
|
|
|
355 |
demo.launch(
|
356 |
share=False,
|
357 |
-
server_name="0.0.0.0",
|
358 |
server_port=7860,
|
359 |
-
show_error=True
|
360 |
-
show_api=False
|
361 |
)
|
|
|
3 |
import os
|
4 |
import gc
|
5 |
import numpy as np
|
|
|
6 |
import tempfile
|
7 |
from typing import Optional, Tuple
|
8 |
import time
|
9 |
|
10 |
+
# ZeroGPU import - bu çok önemli!
|
11 |
+
import spaces
|
12 |
|
13 |
+
# Check if running in ZeroGPU environment
|
14 |
+
IS_ZERO_GPU = os.environ.get("SPACES_ZERO_GPU") == "true"
|
15 |
+
IS_SPACES = os.environ.get("SPACE_ID") is not None
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
16 |
|
17 |
+
def load_model():
|
18 |
+
"""Load LTX-Video model - this will run on ZeroGPU when decorated"""
|
19 |
try:
|
20 |
from diffusers import LTXVideoPipeline
|
|
|
|
|
|
|
21 |
|
22 |
+
print("🔄 Loading LTX-Video model...")
|
|
|
23 |
|
24 |
+
pipe = LTXVideoPipeline.from_pretrained(
|
25 |
+
"Lightricks/LTX-Video",
|
26 |
+
torch_dtype=torch.bfloat16,
|
27 |
+
use_safetensors=True,
|
28 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
29 |
|
30 |
+
# ZeroGPU optimizations
|
31 |
+
if IS_ZERO_GPU:
|
32 |
+
pipe = pipe.to("cuda")
|
33 |
+
# Enable memory optimizations
|
34 |
+
pipe.enable_vae_slicing()
|
35 |
+
pipe.enable_vae_tiling()
|
36 |
+
if hasattr(pipe, 'enable_memory_efficient_attention'):
|
37 |
+
pipe.enable_memory_efficient_attention()
|
38 |
|
39 |
+
print("✅ Model loaded successfully!")
|
40 |
+
return pipe
|
41 |
|
|
|
|
|
42 |
except Exception as e:
|
43 |
+
print(f"❌ Model loading failed: {e}")
|
44 |
+
return None
|
45 |
|
46 |
+
# Global model variable - will be loaded when needed
|
47 |
+
MODEL = None
|
|
|
48 |
|
49 |
+
@spaces.GPU(duration=120) # ZeroGPU decorator - 2 dakika GPU kullanımı
|
50 |
def generate_video(
|
51 |
prompt: str,
|
52 |
negative_prompt: str = "",
|
|
|
57 |
guidance_scale: float = 7.5,
|
58 |
seed: int = -1
|
59 |
) -> Tuple[Optional[str], str]:
|
60 |
+
"""Generate video using LTX-Video with ZeroGPU"""
|
61 |
+
|
62 |
+
global MODEL
|
63 |
|
64 |
+
# Load model if not already loaded
|
65 |
+
if MODEL is None:
|
66 |
+
MODEL = load_model()
|
67 |
+
|
68 |
+
if MODEL is None:
|
69 |
+
return None, "❌ Model loading failed. Please try again."
|
70 |
|
71 |
# Input validation
|
72 |
if not prompt.strip():
|
73 |
return None, "❌ Please enter a valid prompt."
|
74 |
|
75 |
+
if len(prompt) > 300:
|
76 |
+
return None, "❌ Prompt too long. Please keep it under 300 characters."
|
77 |
|
78 |
+
# ZeroGPU optimizations - limit parameters for stability
|
79 |
+
num_frames = min(num_frames, 25) # Max 25 frames
|
80 |
+
num_inference_steps = min(num_inference_steps, 25) # Max 25 steps
|
81 |
+
height = min(height, 768) # Max 768px
|
82 |
+
width = min(width, 768) # Max 768px
|
|
|
|
|
|
|
|
|
|
|
83 |
|
84 |
try:
|
85 |
+
# Clear CUDA cache
|
86 |
+
torch.cuda.empty_cache()
|
|
|
87 |
gc.collect()
|
88 |
|
89 |
# Set seed for reproducibility
|
90 |
generator = None
|
91 |
+
if seed == -1:
|
|
|
|
|
92 |
seed = np.random.randint(0, 2**32 - 1)
|
|
|
93 |
|
94 |
+
generator = torch.Generator(device="cuda").manual_seed(seed)
|
95 |
+
|
96 |
+
print(f"🎬 Generating video: {prompt}")
|
97 |
start_time = time.time()
|
98 |
|
99 |
# Generate video
|
100 |
+
with torch.autocast("cuda", dtype=torch.bfloat16):
|
101 |
+
result = MODEL(
|
102 |
prompt=prompt,
|
103 |
negative_prompt=negative_prompt if negative_prompt else None,
|
104 |
num_frames=num_frames,
|
|
|
106 |
width=width,
|
107 |
num_inference_steps=num_inference_steps,
|
108 |
guidance_scale=guidance_scale,
|
109 |
+
generator=generator,
|
110 |
)
|
111 |
|
112 |
end_time = time.time()
|
113 |
generation_time = end_time - start_time
|
114 |
|
115 |
+
# Export video
|
116 |
video_frames = result.frames[0]
|
117 |
|
118 |
with tempfile.NamedTemporaryFile(suffix=".mp4", delete=False) as tmp_file:
|
119 |
+
# Export to video file
|
120 |
from diffusers.utils import export_to_video
|
121 |
export_to_video(video_frames, tmp_file.name, fps=8)
|
122 |
video_path = tmp_file.name
|
123 |
|
124 |
+
# Clear memory
|
125 |
+
torch.cuda.empty_cache()
|
126 |
+
gc.collect()
|
127 |
+
|
128 |
success_msg = f"""
|
129 |
+
✅ Video generated successfully with ZeroGPU!
|
130 |
|
131 |
📝 Prompt: {prompt}
|
132 |
🎬 Frames: {num_frames}
|
133 |
+
📐 Resolution: {width}x{height}
|
134 |
+
⚙️ Inference Steps: {num_inference_steps}
|
135 |
+
🎯 Guidance Scale: {guidance_scale}
|
136 |
🎲 Seed: {seed}
|
137 |
⏱️ Generation Time: {generation_time:.1f}s
|
138 |
+
🖥️ ZeroGPU: {'✅' if IS_ZERO_GPU else '❌'}
|
139 |
"""
|
140 |
|
141 |
return video_path, success_msg
|
142 |
|
143 |
except torch.cuda.OutOfMemoryError:
|
144 |
+
torch.cuda.empty_cache()
|
145 |
+
gc.collect()
|
146 |
+
return None, "❌ GPU memory exceeded. Try reducing frames, resolution, or inference steps."
|
147 |
+
|
148 |
except Exception as e:
|
149 |
+
torch.cuda.empty_cache()
|
150 |
+
gc.collect()
|
151 |
return None, f"❌ Generation failed: {str(e)}"
|
152 |
|
153 |
def get_system_info():
|
154 |
+
"""Get system information"""
|
155 |
+
gpu_info = "Not available"
|
156 |
+
if torch.cuda.is_available():
|
157 |
+
gpu_info = f"{torch.cuda.get_device_name(0)} ({torch.cuda.get_device_properties(0).total_memory / 1024**3:.1f} GB)"
|
158 |
|
159 |
+
return f"""
|
160 |
+
## 🖥️ System Information
|
|
|
|
|
|
|
161 |
|
162 |
**Environment:**
|
163 |
+
- ZeroGPU: {'✅ Active' if IS_ZERO_GPU else '❌ Not detected'}
|
164 |
- Hugging Face Spaces: {'✅' if IS_SPACES else '❌'}
|
165 |
+
- CUDA Available: {'✅' if torch.cuda.is_available() else '❌'}
|
166 |
+
- GPU: {gpu_info}
|
167 |
+
- PyTorch: {torch.__version__}
|
168 |
|
169 |
**Model Status:**
|
170 |
+
- LTX-Video: {'✅ Loaded' if MODEL is not None else '⏳ Will load on first use'}
|
|
|
|
|
|
|
|
|
171 |
|
172 |
+
**ZeroGPU Benefits:**
|
173 |
+
- ✅ Free GPU access
|
174 |
+
- ✅ A100 40GB GPU
|
175 |
+
- ✅ Automatic resource management
|
176 |
+
- ⏱️ 120 second timeout per generation
|
177 |
+
"""
|
178 |
|
179 |
# Create Gradio interface
|
180 |
+
with gr.Blocks(title="LTX-Video with ZeroGPU", theme=gr.themes.Soft()) as demo:
|
181 |
|
182 |
gr.Markdown("""
|
183 |
+
# 🚀 LTX-Video Generator (ZeroGPU Powered)
|
184 |
+
|
185 |
+
Generate high-quality videos from text using Lightricks' LTX-Video model, powered by **ZeroGPU**!
|
186 |
|
187 |
+
⚡ **Free GPU access** - No need to upgrade your Space hardware!
|
188 |
""")
|
189 |
|
190 |
+
if IS_ZERO_GPU:
|
191 |
+
gr.Markdown("✅ **ZeroGPU Active** - You have free access to A100 GPU!")
|
192 |
+
else:
|
193 |
+
gr.Markdown("⚠️ **ZeroGPU not detected** - Make sure you've enabled ZeroGPU in your Space settings.")
|
194 |
+
|
195 |
with gr.Tab("🎥 Generate Video"):
|
196 |
with gr.Row():
|
197 |
with gr.Column(scale=1):
|
198 |
prompt_input = gr.Textbox(
|
199 |
label="📝 Video Prompt",
|
200 |
+
placeholder="A serene mountain lake reflecting the aurora borealis...",
|
201 |
lines=3,
|
202 |
max_lines=5
|
203 |
)
|
204 |
|
205 |
negative_prompt_input = gr.Textbox(
|
206 |
label="🚫 Negative Prompt (Optional)",
|
207 |
+
placeholder="blurry, low quality, distorted, text, watermark...",
|
208 |
lines=2
|
209 |
)
|
210 |
|
211 |
+
with gr.Accordion("🔧 Advanced Settings", open=False):
|
212 |
+
with gr.Row():
|
213 |
+
num_frames = gr.Slider(
|
214 |
+
minimum=8,
|
215 |
+
maximum=25, # Limited for ZeroGPU
|
216 |
+
value=16,
|
217 |
+
step=1,
|
218 |
+
label="🎬 Number of Frames"
|
219 |
+
)
|
220 |
+
|
221 |
+
num_steps = gr.Slider(
|
222 |
+
minimum=10,
|
223 |
+
maximum=25, # Limited for ZeroGPU
|
224 |
+
value=20,
|
225 |
+
step=1,
|
226 |
+
label="⚙️ Inference Steps"
|
227 |
+
)
|
228 |
|
229 |
+
with gr.Row():
|
230 |
+
width = gr.Dropdown(
|
231 |
+
choices=[256, 512, 768], # Limited for ZeroGPU
|
232 |
+
value=512,
|
233 |
+
label="📐 Width"
|
234 |
+
)
|
235 |
+
|
236 |
+
height = gr.Dropdown(
|
237 |
+
choices=[256, 512, 768], # Limited for ZeroGPU
|
238 |
+
value=512,
|
239 |
+
label="📏 Height"
|
240 |
+
)
|
|
|
|
|
241 |
|
242 |
+
with gr.Row():
|
243 |
+
guidance_scale = gr.Slider(
|
244 |
+
minimum=1.0,
|
245 |
+
maximum=15.0,
|
246 |
+
value=7.5,
|
247 |
+
step=0.5,
|
248 |
+
label="🎯 Guidance Scale"
|
249 |
+
)
|
250 |
+
|
251 |
+
seed = gr.Number(
|
252 |
+
label="🎲 Seed (-1 for random)",
|
253 |
+
value=-1,
|
254 |
+
precision=0
|
255 |
+
)
|
256 |
|
257 |
+
generate_btn = gr.Button("🚀 Generate Video with ZeroGPU", variant="primary", size="lg")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
258 |
|
259 |
+
gr.Markdown("""
|
260 |
+
**⏱️ Note:** Each generation uses 2 minutes of ZeroGPU time.
|
261 |
+
""")
|
262 |
|
263 |
with gr.Column(scale=1):
|
264 |
video_output = gr.Video(
|
|
|
285 |
# Example prompts
|
286 |
gr.Examples(
|
287 |
examples=[
|
288 |
+
["A majestic eagle soaring over snow-capped mountains", "blurry, low quality", 16, 512, 512, 20, 7.5, 42],
|
289 |
+
["Ocean waves gently lapping on a tropical beach at sunset", "", 20, 512, 512, 20, 8.0, 123],
|
290 |
+
["A steaming cup of coffee on a rainy window sill", "text, watermark", 16, 512, 512, 15, 7.0, 456],
|
291 |
+
["Cherry blossoms falling in a peaceful Japanese garden", "", 20, 768, 512, 20, 7.5, 789]
|
292 |
],
|
293 |
inputs=[prompt_input, negative_prompt_input, num_frames, height, width, num_steps, guidance_scale, seed]
|
294 |
)
|
295 |
|
296 |
with gr.Tab("ℹ️ System Info"):
|
297 |
+
info_btn = gr.Button("🔍 Check System Status", variant="secondary")
|
|
|
|
|
298 |
system_output = gr.Markdown()
|
299 |
|
300 |
+
info_btn.click(fn=get_system_info, outputs=system_output)
|
301 |
+
demo.load(fn=get_system_info, outputs=system_output)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
302 |
|
303 |
+
with gr.Tab("📚 ZeroGPU Guide"):
|
304 |
gr.Markdown("""
|
305 |
+
## 🚀 ZeroGPU Nedir?
|
306 |
+
|
307 |
+
**ZeroGPU**, Hugging Face'in ücretsiz GPU hizmetidir:
|
308 |
|
309 |
+
### ✅ Avantajları:
|
310 |
+
- **Ücretsiz A100 GPU** erişimi
|
311 |
+
- **40GB GPU belleği**
|
312 |
+
- Otomatik kaynak yönetimi
|
313 |
+
- CPU Basic Space'te bile çalışır
|
314 |
|
315 |
+
### ⚙️ Nasıl Etkinleştirilir:
|
316 |
+
1. Space Settings → Advanced → ZeroGPU etkinleştir
|
317 |
+
2. `requirements.txt`'e `spaces` ekle
|
318 |
+
3. Kodda `@spaces.GPU()` decorator kullan
|
|
|
319 |
|
320 |
+
### 📊 Limitler:
|
321 |
+
- Fonksiyon başına max 120 saniye
|
322 |
+
- Eşzamanlı kullanım sınırı
|
323 |
+
- Yoğun zamanlarda kuyruk
|
324 |
|
325 |
+
### 💡 İpuçları:
|
326 |
+
- Küçük parametrelerle başlayın
|
327 |
+
- İlk çalıştırma model yükleme nedeniyle uzun sürebilir
|
328 |
+
- Hata alırsanız birkaç saniye bekleyip tekrar deneyin
|
329 |
""")
|
330 |
|
331 |
+
# Launch the app
|
332 |
if __name__ == "__main__":
|
333 |
+
demo.queue(max_size=10) # ZeroGPU için queue gerekli
|
334 |
demo.launch(
|
335 |
share=False,
|
336 |
+
server_name="0.0.0.0",
|
337 |
server_port=7860,
|
338 |
+
show_error=True
|
|
|
339 |
)
|