Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -6,51 +6,122 @@ import numpy as np
|
|
6 |
import tempfile
|
7 |
from typing import Optional, Tuple
|
8 |
import time
|
|
|
|
|
9 |
|
10 |
-
# ZeroGPU import
|
11 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
12 |
|
13 |
-
#
|
14 |
IS_ZERO_GPU = os.environ.get("SPACES_ZERO_GPU") == "true"
|
15 |
IS_SPACES = os.environ.get("SPACE_ID") is not None
|
16 |
|
17 |
-
|
18 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
19 |
try:
|
|
|
|
|
|
|
20 |
from diffusers import LTXVideoPipeline
|
|
|
21 |
|
22 |
-
|
23 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
24 |
pipe = LTXVideoPipeline.from_pretrained(
|
25 |
-
|
26 |
torch_dtype=torch.bfloat16,
|
27 |
use_safetensors=True,
|
|
|
28 |
)
|
29 |
|
30 |
-
#
|
31 |
-
if
|
32 |
pipe = pipe.to("cuda")
|
33 |
-
|
|
|
|
|
|
|
34 |
pipe.enable_vae_slicing()
|
35 |
pipe.enable_vae_tiling()
|
36 |
-
|
37 |
-
|
|
|
38 |
|
39 |
print("β
Model loaded successfully!")
|
40 |
-
return pipe
|
|
|
|
|
|
|
|
|
|
|
41 |
|
42 |
except Exception as e:
|
43 |
-
|
44 |
-
|
|
|
45 |
|
46 |
-
# Global model variable
|
47 |
MODEL = None
|
|
|
48 |
|
49 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
50 |
def generate_video(
|
51 |
prompt: str,
|
52 |
negative_prompt: str = "",
|
53 |
-
num_frames: int =
|
54 |
height: int = 512,
|
55 |
width: int = 512,
|
56 |
num_inference_steps: int = 20,
|
@@ -59,48 +130,46 @@ def generate_video(
|
|
59 |
) -> Tuple[Optional[str], str]:
|
60 |
"""Generate video using LTX-Video with ZeroGPU"""
|
61 |
|
62 |
-
global MODEL
|
63 |
-
|
64 |
-
# Load model if not already loaded
|
65 |
-
if MODEL is None:
|
66 |
-
MODEL = load_model()
|
67 |
|
68 |
-
|
69 |
-
|
|
|
|
|
70 |
|
71 |
# Input validation
|
72 |
if not prompt.strip():
|
73 |
return None, "β Please enter a valid prompt."
|
74 |
|
75 |
-
if len(prompt) >
|
76 |
-
return None, "β Prompt too long. Please keep it under
|
77 |
|
78 |
-
#
|
79 |
-
num_frames = min(num_frames,
|
80 |
-
num_inference_steps = min(num_inference_steps,
|
81 |
-
height = min(height, 768)
|
82 |
-
width = min(width, 768)
|
83 |
|
84 |
try:
|
85 |
-
# Clear
|
86 |
-
torch.cuda.
|
|
|
87 |
gc.collect()
|
88 |
|
89 |
-
# Set seed
|
90 |
-
generator = None
|
91 |
if seed == -1:
|
92 |
seed = np.random.randint(0, 2**32 - 1)
|
93 |
|
94 |
-
generator = torch.Generator(device="cuda").manual_seed(seed)
|
95 |
|
96 |
-
print(f"π¬ Generating
|
97 |
start_time = time.time()
|
98 |
|
99 |
# Generate video
|
100 |
-
with torch.autocast("cuda", dtype=torch.bfloat16):
|
101 |
result = MODEL(
|
102 |
prompt=prompt,
|
103 |
-
negative_prompt=negative_prompt if negative_prompt else None,
|
104 |
num_frames=num_frames,
|
105 |
height=height,
|
106 |
width=width,
|
@@ -112,228 +181,215 @@ def generate_video(
|
|
112 |
end_time = time.time()
|
113 |
generation_time = end_time - start_time
|
114 |
|
115 |
-
#
|
116 |
video_frames = result.frames[0]
|
117 |
|
118 |
with tempfile.NamedTemporaryFile(suffix=".mp4", delete=False) as tmp_file:
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
|
|
|
|
|
|
|
|
123 |
|
124 |
# Clear memory
|
125 |
-
torch.cuda.
|
|
|
126 |
gc.collect()
|
127 |
|
128 |
-
success_msg = f"""
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
"""
|
140 |
|
141 |
return video_path, success_msg
|
142 |
|
143 |
except torch.cuda.OutOfMemoryError:
|
144 |
-
torch.cuda.
|
|
|
145 |
gc.collect()
|
146 |
-
return None, "β GPU memory exceeded. Try reducing frames
|
147 |
|
148 |
except Exception as e:
|
149 |
-
torch.cuda.
|
|
|
150 |
gc.collect()
|
151 |
return None, f"β Generation failed: {str(e)}"
|
152 |
|
153 |
def get_system_info():
|
154 |
-
"""Get system information"""
|
155 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
156 |
if torch.cuda.is_available():
|
157 |
-
|
|
|
|
|
|
|
|
|
158 |
|
159 |
-
return f"""
|
160 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
161 |
|
162 |
-
|
163 |
-
|
164 |
-
|
165 |
-
|
166 |
-
|
167 |
-
|
|
|
|
|
|
|
|
|
168 |
|
169 |
-
|
170 |
-
|
|
|
|
|
|
|
|
|
171 |
|
172 |
-
|
173 |
-
|
174 |
-
|
175 |
-
|
176 |
-
|
177 |
-
|
|
|
|
|
178 |
|
179 |
# Create Gradio interface
|
180 |
-
with gr.Blocks(title="LTX-Video
|
181 |
|
182 |
gr.Markdown("""
|
183 |
-
# π LTX-Video Generator (ZeroGPU
|
184 |
|
185 |
-
Generate high-quality videos from text using Lightricks
|
186 |
-
|
187 |
-
β‘ **Free GPU access** - No need to upgrade your Space hardware!
|
188 |
""")
|
189 |
|
190 |
-
|
191 |
-
|
192 |
-
|
193 |
-
|
|
|
|
|
194 |
|
195 |
with gr.Tab("π₯ Generate Video"):
|
196 |
with gr.Row():
|
197 |
with gr.Column(scale=1):
|
198 |
prompt_input = gr.Textbox(
|
199 |
label="π Video Prompt",
|
200 |
-
placeholder="A
|
201 |
lines=3,
|
202 |
max_lines=5
|
203 |
)
|
204 |
|
205 |
negative_prompt_input = gr.Textbox(
|
206 |
label="π« Negative Prompt (Optional)",
|
207 |
-
placeholder="blurry, low quality, distorted
|
208 |
lines=2
|
209 |
)
|
210 |
|
211 |
-
with gr.Accordion("
|
212 |
with gr.Row():
|
213 |
-
num_frames = gr.Slider(
|
214 |
-
|
215 |
-
maximum=25, # Limited for ZeroGPU
|
216 |
-
value=16,
|
217 |
-
step=1,
|
218 |
-
label="π¬ Number of Frames"
|
219 |
-
)
|
220 |
-
|
221 |
-
num_steps = gr.Slider(
|
222 |
-
minimum=10,
|
223 |
-
maximum=25, # Limited for ZeroGPU
|
224 |
-
value=20,
|
225 |
-
step=1,
|
226 |
-
label="βοΈ Inference Steps"
|
227 |
-
)
|
228 |
|
229 |
with gr.Row():
|
230 |
-
width = gr.Dropdown(
|
231 |
-
|
232 |
-
value=512,
|
233 |
-
label="π Width"
|
234 |
-
)
|
235 |
-
|
236 |
-
height = gr.Dropdown(
|
237 |
-
choices=[256, 512, 768], # Limited for ZeroGPU
|
238 |
-
value=512,
|
239 |
-
label="π Height"
|
240 |
-
)
|
241 |
|
242 |
with gr.Row():
|
243 |
-
guidance_scale = gr.Slider(
|
244 |
-
|
245 |
-
maximum=15.0,
|
246 |
-
value=7.5,
|
247 |
-
step=0.5,
|
248 |
-
label="π― Guidance Scale"
|
249 |
-
)
|
250 |
-
|
251 |
-
seed = gr.Number(
|
252 |
-
label="π² Seed (-1 for random)",
|
253 |
-
value=-1,
|
254 |
-
precision=0
|
255 |
-
)
|
256 |
|
257 |
-
generate_btn = gr.Button("π Generate Video
|
258 |
-
|
259 |
-
gr.Markdown("""
|
260 |
-
**β±οΈ Note:** Each generation uses 2 minutes of ZeroGPU time.
|
261 |
-
""")
|
262 |
|
263 |
with gr.Column(scale=1):
|
264 |
-
video_output = gr.Video(
|
265 |
-
|
266 |
-
height=400
|
267 |
-
)
|
268 |
-
|
269 |
-
result_text = gr.Textbox(
|
270 |
-
label="π Generation Info",
|
271 |
-
lines=8,
|
272 |
-
show_copy_button=True
|
273 |
-
)
|
274 |
|
275 |
-
# Event
|
276 |
generate_btn.click(
|
277 |
fn=generate_video,
|
278 |
-
inputs=[
|
279 |
-
prompt_input, negative_prompt_input, num_frames,
|
280 |
-
height, width, num_steps, guidance_scale, seed
|
281 |
-
],
|
282 |
outputs=[video_output, result_text]
|
283 |
)
|
284 |
|
285 |
-
#
|
286 |
gr.Examples(
|
287 |
examples=[
|
288 |
-
["A
|
289 |
-
["Ocean waves
|
290 |
-
["A
|
291 |
-
["Cherry blossoms falling in a peaceful Japanese garden", "", 20, 768, 512, 20, 7.5, 789]
|
292 |
],
|
293 |
inputs=[prompt_input, negative_prompt_input, num_frames, height, width, num_steps, guidance_scale, seed]
|
294 |
)
|
295 |
|
296 |
with gr.Tab("βΉοΈ System Info"):
|
297 |
-
info_btn = gr.Button("π Check System
|
298 |
system_output = gr.Markdown()
|
299 |
|
300 |
info_btn.click(fn=get_system_info, outputs=system_output)
|
301 |
demo.load(fn=get_system_info, outputs=system_output)
|
302 |
|
303 |
-
with gr.Tab("
|
304 |
-
gr.
|
305 |
-
|
306 |
|
307 |
-
|
308 |
-
|
309 |
-
### β
AvantajlarΔ±:
|
310 |
-
- **Γcretsiz A100 GPU** eriΕimi
|
311 |
-
- **40GB GPU belleΔi**
|
312 |
-
- Otomatik kaynak yΓΆnetimi
|
313 |
-
- CPU Basic Space'te bile Γ§alΔ±ΕΔ±r
|
314 |
-
|
315 |
-
### βοΈ NasΔ±l EtkinleΕtirilir:
|
316 |
-
1. Space Settings β Advanced β ZeroGPU etkinleΕtir
|
317 |
-
2. `requirements.txt`'e `spaces` ekle
|
318 |
-
3. Kodda `@spaces.GPU()` decorator kullan
|
319 |
-
|
320 |
-
### π Limitler:
|
321 |
-
- Fonksiyon baΕΔ±na max 120 saniye
|
322 |
-
- EΕzamanlΔ± kullanΔ±m sΔ±nΔ±rΔ±
|
323 |
-
- YoΔun zamanlarda kuyruk
|
324 |
-
|
325 |
-
### π‘ Δ°puΓ§larΔ±:
|
326 |
-
- KΓΌΓ§ΓΌk parametrelerle baΕlayΔ±n
|
327 |
-
- Δ°lk Γ§alΔ±ΕtΔ±rma model yΓΌkleme nedeniyle uzun sΓΌrebilir
|
328 |
-
- Hata alΔ±rsanΔ±z birkaΓ§ saniye bekleyip tekrar deneyin
|
329 |
-
""")
|
330 |
|
331 |
-
# Launch
|
332 |
if __name__ == "__main__":
|
333 |
-
demo.queue(max_size=
|
334 |
demo.launch(
|
335 |
share=False,
|
336 |
-
server_name="0.0.0.0",
|
337 |
server_port=7860,
|
338 |
show_error=True
|
339 |
)
|
|
|
6 |
import tempfile
|
7 |
from typing import Optional, Tuple
|
8 |
import time
|
9 |
+
import subprocess
|
10 |
+
import sys
|
11 |
|
12 |
+
# ZeroGPU import
|
13 |
+
try:
|
14 |
+
import spaces
|
15 |
+
SPACES_AVAILABLE = True
|
16 |
+
print("β
Spaces library loaded successfully")
|
17 |
+
except ImportError:
|
18 |
+
print("β οΈ Spaces library not available")
|
19 |
+
SPACES_AVAILABLE = False
|
20 |
+
# Create dummy decorator
|
21 |
+
def spaces_gpu_decorator(duration=60):
|
22 |
+
def decorator(func):
|
23 |
+
return func
|
24 |
+
return decorator
|
25 |
+
spaces = type('spaces', (), {'GPU': spaces_gpu_decorator})()
|
26 |
|
27 |
+
# Environment checks
|
28 |
IS_ZERO_GPU = os.environ.get("SPACES_ZERO_GPU") == "true"
|
29 |
IS_SPACES = os.environ.get("SPACE_ID") is not None
|
30 |
|
31 |
+
print(f"Environment: ZeroGPU={IS_ZERO_GPU}, Spaces={IS_SPACES}")
|
32 |
+
|
33 |
+
def check_and_install_requirements():
|
34 |
+
"""Check and install missing requirements"""
|
35 |
+
try:
|
36 |
+
import diffusers
|
37 |
+
print(f"β
Diffusers version: {diffusers.__version__}")
|
38 |
+
return True
|
39 |
+
except ImportError:
|
40 |
+
print("β Diffusers not found, attempting to install...")
|
41 |
+
try:
|
42 |
+
subprocess.check_call([sys.executable, "-m", "pip", "install", "diffusers[torch]>=0.30.0"])
|
43 |
+
subprocess.check_call([sys.executable, "-m", "pip", "install", "transformers>=4.35.0"])
|
44 |
+
subprocess.check_call([sys.executable, "-m", "pip", "install", "accelerate"])
|
45 |
+
import diffusers
|
46 |
+
print(f"β
Diffusers installed successfully: {diffusers.__version__}")
|
47 |
+
return True
|
48 |
+
except Exception as e:
|
49 |
+
print(f"β Failed to install diffusers: {e}")
|
50 |
+
return False
|
51 |
+
|
52 |
+
def load_model_safe():
|
53 |
+
"""Safely load the LTX-Video model with comprehensive error handling"""
|
54 |
+
|
55 |
+
# First, ensure requirements are installed
|
56 |
+
if not check_and_install_requirements():
|
57 |
+
return None, "Failed to install required packages"
|
58 |
+
|
59 |
try:
|
60 |
+
print("π Attempting to load LTX-Video model...")
|
61 |
+
|
62 |
+
# Import after installation
|
63 |
from diffusers import LTXVideoPipeline
|
64 |
+
import torch
|
65 |
|
66 |
+
model_id = "Lightricks/LTX-Video"
|
67 |
|
68 |
+
# Check available memory
|
69 |
+
if torch.cuda.is_available():
|
70 |
+
gpu_memory = torch.cuda.get_device_properties(0).total_memory / (1024**3)
|
71 |
+
print(f"π Available GPU memory: {gpu_memory:.1f} GB")
|
72 |
+
|
73 |
+
# Load with conservative settings
|
74 |
+
print("π₯ Loading pipeline...")
|
75 |
pipe = LTXVideoPipeline.from_pretrained(
|
76 |
+
model_id,
|
77 |
torch_dtype=torch.bfloat16,
|
78 |
use_safetensors=True,
|
79 |
+
variant="fp16"
|
80 |
)
|
81 |
|
82 |
+
# Move to GPU if available
|
83 |
+
if torch.cuda.is_available():
|
84 |
pipe = pipe.to("cuda")
|
85 |
+
print("π Model moved to GPU")
|
86 |
+
|
87 |
+
# Enable optimizations
|
88 |
+
try:
|
89 |
pipe.enable_vae_slicing()
|
90 |
pipe.enable_vae_tiling()
|
91 |
+
print("β‘ Memory optimizations enabled")
|
92 |
+
except Exception as e:
|
93 |
+
print(f"β οΈ Some optimizations failed: {e}")
|
94 |
|
95 |
print("β
Model loaded successfully!")
|
96 |
+
return pipe, None
|
97 |
+
|
98 |
+
except ImportError as e:
|
99 |
+
error_msg = f"Import error: {e}. Please check if diffusers is properly installed."
|
100 |
+
print(f"β {error_msg}")
|
101 |
+
return None, error_msg
|
102 |
|
103 |
except Exception as e:
|
104 |
+
error_msg = f"Model loading failed: {str(e)}"
|
105 |
+
print(f"β {error_msg}")
|
106 |
+
return None, error_msg
|
107 |
|
108 |
+
# Global model variable
|
109 |
MODEL = None
|
110 |
+
MODEL_ERROR = None
|
111 |
|
112 |
+
def initialize_model():
|
113 |
+
"""Initialize model on first use"""
|
114 |
+
global MODEL, MODEL_ERROR
|
115 |
+
if MODEL is None and MODEL_ERROR is None:
|
116 |
+
print("π Initializing model for first use...")
|
117 |
+
MODEL, MODEL_ERROR = load_model_safe()
|
118 |
+
return MODEL is not None
|
119 |
+
|
120 |
+
@spaces.GPU(duration=120) if SPACES_AVAILABLE else lambda x: x
|
121 |
def generate_video(
|
122 |
prompt: str,
|
123 |
negative_prompt: str = "",
|
124 |
+
num_frames: int = 16,
|
125 |
height: int = 512,
|
126 |
width: int = 512,
|
127 |
num_inference_steps: int = 20,
|
|
|
130 |
) -> Tuple[Optional[str], str]:
|
131 |
"""Generate video using LTX-Video with ZeroGPU"""
|
132 |
|
133 |
+
global MODEL, MODEL_ERROR
|
|
|
|
|
|
|
|
|
134 |
|
135 |
+
# Initialize model if needed
|
136 |
+
if not initialize_model():
|
137 |
+
error_msg = f"β Model initialization failed: {MODEL_ERROR or 'Unknown error'}"
|
138 |
+
return None, error_msg
|
139 |
|
140 |
# Input validation
|
141 |
if not prompt.strip():
|
142 |
return None, "β Please enter a valid prompt."
|
143 |
|
144 |
+
if len(prompt) > 200:
|
145 |
+
return None, "β Prompt too long. Please keep it under 200 characters."
|
146 |
|
147 |
+
# Limit parameters for stability
|
148 |
+
num_frames = min(max(num_frames, 8), 24)
|
149 |
+
num_inference_steps = min(max(num_inference_steps, 10), 25)
|
150 |
+
height = min(max(height, 256), 768)
|
151 |
+
width = min(max(width, 256), 768)
|
152 |
|
153 |
try:
|
154 |
+
# Clear memory
|
155 |
+
if torch.cuda.is_available():
|
156 |
+
torch.cuda.empty_cache()
|
157 |
gc.collect()
|
158 |
|
159 |
+
# Set seed
|
|
|
160 |
if seed == -1:
|
161 |
seed = np.random.randint(0, 2**32 - 1)
|
162 |
|
163 |
+
generator = torch.Generator(device="cuda" if torch.cuda.is_available() else "cpu").manual_seed(seed)
|
164 |
|
165 |
+
print(f"π¬ Generating: '{prompt[:50]}...'")
|
166 |
start_time = time.time()
|
167 |
|
168 |
# Generate video
|
169 |
+
with torch.autocast("cuda" if torch.cuda.is_available() else "cpu", dtype=torch.bfloat16):
|
170 |
result = MODEL(
|
171 |
prompt=prompt,
|
172 |
+
negative_prompt=negative_prompt if negative_prompt.strip() else None,
|
173 |
num_frames=num_frames,
|
174 |
height=height,
|
175 |
width=width,
|
|
|
181 |
end_time = time.time()
|
182 |
generation_time = end_time - start_time
|
183 |
|
184 |
+
# Save video
|
185 |
video_frames = result.frames[0]
|
186 |
|
187 |
with tempfile.NamedTemporaryFile(suffix=".mp4", delete=False) as tmp_file:
|
188 |
+
try:
|
189 |
+
from diffusers.utils import export_to_video
|
190 |
+
export_to_video(video_frames, tmp_file.name, fps=8)
|
191 |
+
video_path = tmp_file.name
|
192 |
+
except Exception as e:
|
193 |
+
# Fallback: save as individual frames if export fails
|
194 |
+
print(f"β οΈ Video export failed, trying alternative: {e}")
|
195 |
+
return None, f"β Video export failed: {str(e)}"
|
196 |
|
197 |
# Clear memory
|
198 |
+
if torch.cuda.is_available():
|
199 |
+
torch.cuda.empty_cache()
|
200 |
gc.collect()
|
201 |
|
202 |
+
success_msg = f"""β
Video generated successfully!
|
203 |
+
|
204 |
+
π **Prompt:** {prompt}
|
205 |
+
π¬ **Frames:** {num_frames}
|
206 |
+
π **Resolution:** {width}x{height}
|
207 |
+
βοΈ **Inference Steps:** {num_inference_steps}
|
208 |
+
π― **Guidance Scale:** {guidance_scale}
|
209 |
+
π² **Seed:** {seed}
|
210 |
+
β±οΈ **Generation Time:** {generation_time:.1f}s
|
211 |
+
π₯οΈ **Device:** {'CUDA' if torch.cuda.is_available() else 'CPU'}
|
212 |
+
β‘ **ZeroGPU:** {'β
' if IS_ZERO_GPU else 'β'}"""
|
|
|
213 |
|
214 |
return video_path, success_msg
|
215 |
|
216 |
except torch.cuda.OutOfMemoryError:
|
217 |
+
if torch.cuda.is_available():
|
218 |
+
torch.cuda.empty_cache()
|
219 |
gc.collect()
|
220 |
+
return None, "β GPU memory exceeded. Try reducing frames/resolution or try again in a moment."
|
221 |
|
222 |
except Exception as e:
|
223 |
+
if torch.cuda.is_available():
|
224 |
+
torch.cuda.empty_cache()
|
225 |
gc.collect()
|
226 |
return None, f"β Generation failed: {str(e)}"
|
227 |
|
228 |
def get_system_info():
|
229 |
+
"""Get comprehensive system information"""
|
230 |
+
|
231 |
+
# Check package versions
|
232 |
+
package_info = {}
|
233 |
+
try:
|
234 |
+
import diffusers
|
235 |
+
package_info['diffusers'] = diffusers.__version__
|
236 |
+
except ImportError:
|
237 |
+
package_info['diffusers'] = 'β Not installed'
|
238 |
+
|
239 |
+
try:
|
240 |
+
import transformers
|
241 |
+
package_info['transformers'] = transformers.__version__
|
242 |
+
except ImportError:
|
243 |
+
package_info['transformers'] = 'β Not installed'
|
244 |
+
|
245 |
+
# GPU info
|
246 |
+
gpu_info = "β Not available"
|
247 |
+
gpu_memory = 0
|
248 |
if torch.cuda.is_available():
|
249 |
+
try:
|
250 |
+
gpu_info = torch.cuda.get_device_name(0)
|
251 |
+
gpu_memory = torch.cuda.get_device_properties(0).total_memory / (1024**3)
|
252 |
+
except:
|
253 |
+
gpu_info = "β
Available (details unavailable)"
|
254 |
|
255 |
+
return f"""## π₯οΈ System Information
|
256 |
+
|
257 |
+
**Environment:**
|
258 |
+
- π ZeroGPU: {'β
Active' if IS_ZERO_GPU else 'β Not detected'}
|
259 |
+
- π HF Spaces: {'β
' if IS_SPACES else 'β'}
|
260 |
+
- π₯ CUDA: {'β
' if torch.cuda.is_available() else 'β'}
|
261 |
+
- π₯οΈ GPU: {gpu_info} ({gpu_memory:.1f} GB)
|
262 |
+
|
263 |
+
**Packages:**
|
264 |
+
- PyTorch: {torch.__version__}
|
265 |
+
- Diffusers: {package_info.get('diffusers', 'Unknown')}
|
266 |
+
- Transformers: {package_info.get('transformers', 'Unknown')}
|
267 |
+
- Spaces: {'β
' if SPACES_AVAILABLE else 'β'}
|
268 |
+
|
269 |
+
**Model Status:**
|
270 |
+
- LTX-Video: {'β
Loaded' if MODEL is not None else 'β³ Will load on first use' if MODEL_ERROR is None else f'β Error: {MODEL_ERROR}'}
|
271 |
+
|
272 |
+
**Tips:**
|
273 |
+
{'π― Ready to generate!' if MODEL is not None else 'β‘ First generation will take longer due to model loading'}"""
|
274 |
+
|
275 |
+
def test_dependencies():
|
276 |
+
"""Test if all dependencies are working"""
|
277 |
+
results = []
|
278 |
|
279 |
+
# Test torch
|
280 |
+
try:
|
281 |
+
import torch
|
282 |
+
results.append(f"β
PyTorch {torch.__version__}")
|
283 |
+
if torch.cuda.is_available():
|
284 |
+
results.append(f"β
CUDA {torch.version.cuda}")
|
285 |
+
else:
|
286 |
+
results.append("β οΈ CUDA not available")
|
287 |
+
except Exception as e:
|
288 |
+
results.append(f"β PyTorch: {e}")
|
289 |
|
290 |
+
# Test diffusers
|
291 |
+
try:
|
292 |
+
import diffusers
|
293 |
+
results.append(f"β
Diffusers {diffusers.__version__}")
|
294 |
+
except Exception as e:
|
295 |
+
results.append(f"β Diffusers: {e}")
|
296 |
|
297 |
+
# Test transformers
|
298 |
+
try:
|
299 |
+
import transformers
|
300 |
+
results.append(f"β
Transformers {transformers.__version__}")
|
301 |
+
except Exception as e:
|
302 |
+
results.append(f"β Transformers: {e}")
|
303 |
+
|
304 |
+
return "\n".join(results)
|
305 |
|
306 |
# Create Gradio interface
|
307 |
+
with gr.Blocks(title="LTX-Video ZeroGPU", theme=gr.themes.Soft()) as demo:
|
308 |
|
309 |
gr.Markdown("""
|
310 |
+
# π LTX-Video Generator (ZeroGPU)
|
311 |
|
312 |
+
Generate high-quality videos from text using **Lightricks LTX-Video** model with **ZeroGPU**!
|
|
|
|
|
313 |
""")
|
314 |
|
315 |
+
# Status indicator
|
316 |
+
with gr.Row():
|
317 |
+
gr.Markdown(f"""
|
318 |
+
**Status:** {'π’ ZeroGPU Active' if IS_ZERO_GPU else 'π‘ CPU Mode'} |
|
319 |
+
**Environment:** {'HF Spaces' if IS_SPACES else 'Local'}
|
320 |
+
""")
|
321 |
|
322 |
with gr.Tab("π₯ Generate Video"):
|
323 |
with gr.Row():
|
324 |
with gr.Column(scale=1):
|
325 |
prompt_input = gr.Textbox(
|
326 |
label="π Video Prompt",
|
327 |
+
placeholder="A majestic eagle soaring through mountain peaks...",
|
328 |
lines=3,
|
329 |
max_lines=5
|
330 |
)
|
331 |
|
332 |
negative_prompt_input = gr.Textbox(
|
333 |
label="π« Negative Prompt (Optional)",
|
334 |
+
placeholder="blurry, low quality, distorted...",
|
335 |
lines=2
|
336 |
)
|
337 |
|
338 |
+
with gr.Accordion("βοΈ Settings", open=True):
|
339 |
with gr.Row():
|
340 |
+
num_frames = gr.Slider(8, 24, value=16, step=1, label="π¬ Frames")
|
341 |
+
num_steps = gr.Slider(10, 25, value=20, step=1, label="π Steps")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
342 |
|
343 |
with gr.Row():
|
344 |
+
width = gr.Dropdown([256, 512, 768], value=512, label="π Width")
|
345 |
+
height = gr.Dropdown([256, 512, 768], value=512, label="π Height")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
346 |
|
347 |
with gr.Row():
|
348 |
+
guidance_scale = gr.Slider(1.0, 12.0, value=7.5, step=0.5, label="π― Guidance")
|
349 |
+
seed = gr.Number(value=-1, precision=0, label="π² Seed (-1=random)")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
350 |
|
351 |
+
generate_btn = gr.Button("π Generate Video", variant="primary", size="lg")
|
|
|
|
|
|
|
|
|
352 |
|
353 |
with gr.Column(scale=1):
|
354 |
+
video_output = gr.Video(label="π₯ Generated Video", height=400)
|
355 |
+
result_text = gr.Textbox(label="π Results", lines=6, show_copy_button=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
356 |
|
357 |
+
# Event handlers
|
358 |
generate_btn.click(
|
359 |
fn=generate_video,
|
360 |
+
inputs=[prompt_input, negative_prompt_input, num_frames, height, width, num_steps, guidance_scale, seed],
|
|
|
|
|
|
|
361 |
outputs=[video_output, result_text]
|
362 |
)
|
363 |
|
364 |
+
# Examples
|
365 |
gr.Examples(
|
366 |
examples=[
|
367 |
+
["A peaceful cat sleeping in a sunny garden", "", 16, 512, 512, 20, 7.5, 42],
|
368 |
+
["Ocean waves at sunset, cinematic view", "blurry", 20, 512, 512, 20, 8.0, 123],
|
369 |
+
["A hummingbird hovering near red flowers", "", 16, 512, 512, 15, 7.0, 456]
|
|
|
370 |
],
|
371 |
inputs=[prompt_input, negative_prompt_input, num_frames, height, width, num_steps, guidance_scale, seed]
|
372 |
)
|
373 |
|
374 |
with gr.Tab("βΉοΈ System Info"):
|
375 |
+
info_btn = gr.Button("π Check System", variant="secondary")
|
376 |
system_output = gr.Markdown()
|
377 |
|
378 |
info_btn.click(fn=get_system_info, outputs=system_output)
|
379 |
demo.load(fn=get_system_info, outputs=system_output)
|
380 |
|
381 |
+
with gr.Tab("π§ Debug"):
|
382 |
+
test_btn = gr.Button("π§ͺ Test Dependencies")
|
383 |
+
test_output = gr.Textbox(label="Test Results", lines=10)
|
384 |
|
385 |
+
test_btn.click(fn=test_dependencies, outputs=test_output)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
386 |
|
387 |
+
# Launch
|
388 |
if __name__ == "__main__":
|
389 |
+
demo.queue(max_size=5)
|
390 |
demo.launch(
|
391 |
share=False,
|
392 |
+
server_name="0.0.0.0",
|
393 |
server_port=7860,
|
394 |
show_error=True
|
395 |
)
|