File size: 20,965 Bytes
69f2bad
8e5115d
 
 
 
 
 
 
69f2bad
c40d82c
1431767
 
 
 
 
e6fb807
 
c40d82c
7358182
e6fb807
8e5115d
05424ef
e632d6b
 
7358182
8e5115d
4dcdb86
7358182
4dcdb86
 
05424ef
4dcdb86
 
c40d82c
4dcdb86
c40d82c
05424ef
c40d82c
05424ef
4dcdb86
05424ef
 
4dcdb86
 
c40d82c
4dcdb86
05424ef
 
c40d82c
05424ef
4dcdb86
05424ef
7a8e438
4dcdb86
 
05424ef
4dcdb86
 
 
 
05424ef
4dcdb86
7358182
7a8e438
7358182
 
 
 
7a8e438
7358182
7a8e438
c40d82c
7a8e438
c40d82c
 
 
 
05424ef
 
4dcdb86
05424ef
 
 
 
4dcdb86
05424ef
4dcdb86
 
7358182
4dcdb86
 
7a8e438
7358182
 
 
 
7a8e438
4dcdb86
7358182
4dcdb86
 
7a8e438
4dcdb86
 
7a8e438
05424ef
4dcdb86
7a8e438
 
4dcdb86
7a8e438
 
4dcdb86
 
7a8e438
 
05424ef
 
7a8e438
4dcdb86
 
 
7a8e438
 
4dcdb86
05424ef
 
c40d82c
05424ef
7a8e438
4dcdb86
 
 
05424ef
4dcdb86
 
 
 
 
 
 
7a8e438
4dcdb86
05424ef
4dcdb86
 
 
 
 
c40d82c
 
 
 
4dcdb86
c40d82c
05424ef
4dcdb86
 
 
 
7a8e438
c40d82c
7a8e438
4dcdb86
 
05424ef
4dcdb86
 
 
 
c40d82c
4dcdb86
 
 
 
 
 
 
 
 
 
 
7a8e438
 
05424ef
7a8e438
4dcdb86
 
 
7a8e438
 
 
 
4dcdb86
7a8e438
 
c40d82c
7a8e438
 
1431767
c40d82c
4dcdb86
8e5115d
 
c40d82c
 
 
7a8e438
8e5115d
4dcdb86
e632d6b
7a8e438
7358182
4dcdb86
 
 
 
8e5115d
 
 
4dcdb86
c40d82c
4dcdb86
 
8e5115d
4dcdb86
7358182
4dcdb86
 
 
 
 
8e5115d
4dcdb86
c40d82c
4dcdb86
 
 
e6fb807
8e5115d
c40d82c
05424ef
8e5115d
4dcdb86
7358182
 
8e5115d
7358182
 
8e5115d
4dcdb86
 
 
 
05424ef
7358182
 
4dcdb86
c40d82c
 
 
05424ef
 
 
 
c40d82c
05424ef
 
c40d82c
05424ef
 
4dcdb86
05424ef
 
c40d82c
4dcdb86
 
 
 
05424ef
4dcdb86
c40d82c
05424ef
c40d82c
05424ef
4dcdb86
c40d82c
05424ef
7358182
 
 
 
4dcdb86
05424ef
 
c40d82c
05424ef
 
4dcdb86
05424ef
4dcdb86
 
c40d82c
4dcdb86
c40d82c
7358182
 
 
c40d82c
7358182
4dcdb86
7358182
4dcdb86
05424ef
 
7358182
c40d82c
4dcdb86
1431767
4dcdb86
7358182
c40d82c
7358182
c40d82c
 
7358182
4dcdb86
05424ef
 
4dcdb86
c40d82c
4dcdb86
05424ef
4dcdb86
7358182
 
 
05424ef
c40d82c
 
05424ef
4dcdb86
05424ef
8e5115d
7358182
1431767
e632d6b
c40d82c
 
4dcdb86
c40d82c
 
4dcdb86
c40d82c
4dcdb86
c40d82c
4dcdb86
 
 
 
c40d82c
 
4dcdb86
c40d82c
4dcdb86
 
 
 
c40d82c
4dcdb86
 
 
 
c40d82c
4dcdb86
8e5115d
7a8e438
c40d82c
7a8e438
 
4dcdb86
7a8e438
7358182
4dcdb86
 
c40d82c
4dcdb86
8e5115d
4dcdb86
c40d82c
 
 
 
4dcdb86
05424ef
4dcdb86
c40d82c
4dcdb86
 
 
05424ef
4dcdb86
 
 
 
 
1431767
4dcdb86
c40d82c
4dcdb86
 
 
05424ef
4dcdb86
c40d82c
4dcdb86
 
 
 
c40d82c
4dcdb86
 
c40d82c
4dcdb86
8e5115d
4dcdb86
 
8e5115d
 
4dcdb86
c40d82c
4dcdb86
8e5115d
 
4dcdb86
05424ef
 
4dcdb86
 
05424ef
 
 
4dcdb86
8e5115d
 
 
4dcdb86
 
 
8e5115d
 
 
4dcdb86
 
8e5115d
 
 
4dcdb86
05424ef
c40d82c
4dcdb86
c40d82c
 
 
4dcdb86
c40d82c
 
 
 
4dcdb86
c40d82c
 
4dcdb86
c40d82c
4dcdb86
 
c40d82c
 
4dcdb86
c40d82c
 
 
 
4dcdb86
 
 
 
 
 
e6fb807
c40d82c
4dcdb86
c40d82c
 
 
8e5115d
05424ef
4dcdb86
 
 
05424ef
8e5115d
 
c40d82c
4dcdb86
c40d82c
 
 
 
4dcdb86
 
c40d82c
 
8e5115d
c40d82c
8e5115d
4dcdb86
c40d82c
 
4dcdb86
c40d82c
8e5115d
 
 
4dcdb86
8e5115d
 
05424ef
4dcdb86
 
 
05424ef
 
4dcdb86
 
 
05424ef
 
4dcdb86
 
 
05424ef
 
4dcdb86
 
 
05424ef
8e5115d
4dcdb86
8e5115d
 
4dcdb86
7358182
4dcdb86
 
 
7a8e438
05424ef
4dcdb86
c40d82c
7a8e438
c40d82c
05424ef
4dcdb86
7a8e438
05424ef
c40d82c
8e5115d
 
4dcdb86
8e5115d
 
1431767
8e5115d
7a8e438
8e5115d
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
import gradio as gr
import torch
import os
import gc
import numpy as np
import tempfile
from typing import Optional, Tuple
import time

# ZeroGPU support
try:
    import spaces
    SPACES_AVAILABLE = True
except ImportError:
    SPACES_AVAILABLE = False
    class spaces:
        @staticmethod
        def GPU(duration=300):
            def decorator(func): return func
            return decorator

# Environment
IS_ZERO_GPU = os.environ.get("SPACES_ZERO_GPU") == "true"
IS_SPACES = os.environ.get("SPACE_ID") is not None
HAS_CUDA = torch.cuda.is_available()

print(f"πŸš€ H200 CogVideoX Setup: ZeroGPU={IS_ZERO_GPU}, Spaces={IS_SPACES}, CUDA={HAS_CUDA}")

# WORKING MODELS - Tested and confirmed
WORKING_MODELS = [
    {
        "id": "THUDM/CogVideoX-2b",
        "name": "CogVideoX-2B",
        "pipeline_class": "CogVideoXPipeline",
        "resolution": (720, 480),
        "max_frames": 49,
        "dtype": torch.bfloat16,
        "fps": 8,
        "priority": 1,
        "description": "2B parameter model - fast and high quality"
    },
    {
        "id": "THUDM/CogVideoX-5b",
        "name": "CogVideoX-5B", 
        "pipeline_class": "CogVideoXPipeline",
        "resolution": (720, 480),
        "max_frames": 49,
        "dtype": torch.bfloat16,
        "fps": 8,
        "priority": 2,
        "description": "5B parameter model - maximum quality"
    },
    {
        "id": "damo-vilab/text-to-video-ms-1.7b",
        "name": "ModelScope T2V 1.7B",
        "pipeline_class": "DiffusionPipeline",
        "resolution": (256, 256),
        "max_frames": 16,
        "dtype": torch.float16,
        "fps": 8,
        "priority": 3,
        "description": "Reliable fallback model"
    }
]

# Global variables
MODEL = None
MODEL_INFO = None
LOADING_LOGS = []

def log_loading(message):
    """Enhanced logging with timestamps"""
    global LOADING_LOGS
    timestamp = time.strftime('%H:%M:%S')
    formatted_msg = f"[{timestamp}] {message}"
    print(formatted_msg)
    LOADING_LOGS.append(formatted_msg)

def get_h200_memory():
    """Get H200 memory stats"""
    if HAS_CUDA:
        try:
            total = torch.cuda.get_device_properties(0).total_memory / (1024**3)
            allocated = torch.cuda.memory_allocated(0) / (1024**3)
            return total, allocated
        except:
            return 0, 0
    return 0, 0

def load_working_model():
    """Load first working model - CogVideoX priority"""
    global MODEL, MODEL_INFO, LOADING_LOGS
    
    if MODEL is not None:
        return True
    
    LOADING_LOGS = []
    log_loading("🎯 H200 Working Model Loading - CogVideoX Priority")
    
    total_mem, allocated_mem = get_h200_memory()
    log_loading(f"πŸ’Ύ H200 Memory: {total_mem:.1f}GB total, {allocated_mem:.1f}GB allocated")
    
    # Try models in priority order
    sorted_models = sorted(WORKING_MODELS, key=lambda x: x["priority"])
    
    for model_config in sorted_models:
        if try_load_working_model(model_config):
            return True
    
    log_loading("❌ All working models failed")
    return False

def try_load_working_model(config):
    """Try loading a specific working model"""
    global MODEL, MODEL_INFO
    
    model_id = config["id"]
    model_name = config["name"]
    
    log_loading(f"πŸ”„ Loading {model_name}...")
    log_loading(f"  πŸ“‹ Config: {model_id}")
    log_loading(f"  🎯 Target: {config['max_frames']} frames, {config['fps']} fps, {config['resolution']}")
    
    try:
        # Clear H200 memory first
        if HAS_CUDA:
            torch.cuda.empty_cache()
            torch.cuda.synchronize()
        gc.collect()
        
        log_loading(f"  🧹 Memory cleared")
        
        # Import appropriate pipeline
        if config["pipeline_class"] == "CogVideoXPipeline":
            try:
                from diffusers import CogVideoXPipeline
                PipelineClass = CogVideoXPipeline
                log_loading(f"  πŸ“₯ Using CogVideoXPipeline")
            except ImportError as e:
                log_loading(f"  ❌ CogVideoXPipeline import failed: {e}")
                return False
        else:
            from diffusers import DiffusionPipeline
            PipelineClass = DiffusionPipeline
            log_loading(f"  πŸ“₯ Using DiffusionPipeline")
        
        # Load model with minimal parameters
        log_loading(f"  πŸ”„ Downloading/Loading {model_name}...")
        start_load = time.time()
        
        pipe = PipelineClass.from_pretrained(
            model_id,
            torch_dtype=config["dtype"],
            trust_remote_code=True
        )
        
        load_time = time.time() - start_load
        log_loading(f"  βœ… Model loaded in {load_time:.1f}s")
        
        # Move to H200 GPU
        if HAS_CUDA:
            log_loading(f"  πŸ“± Moving to H200 CUDA...")
            pipe = pipe.to("cuda")
            torch.cuda.synchronize()
            log_loading(f"  βœ… Model on H200 GPU")
        
        # H200 optimizations
        if hasattr(pipe, 'enable_vae_slicing'):
            pipe.enable_vae_slicing()
            log_loading(f"  ⚑ VAE slicing enabled")
        
        if hasattr(pipe, 'enable_vae_tiling'):
            pipe.enable_vae_tiling()
            log_loading(f"  ⚑ VAE tiling enabled")
        
        if hasattr(pipe, 'enable_memory_efficient_attention'):
            pipe.enable_memory_efficient_attention()
            log_loading(f"  ⚑ Memory efficient attention enabled")
        
        # Memory check after setup
        total_mem, allocated_mem = get_h200_memory()
        log_loading(f"  πŸ’Ύ Final memory: {allocated_mem:.1f}GB / {total_mem:.1f}GB")
        
        MODEL = pipe
        MODEL_INFO = config
        
        log_loading(f"🎯 SUCCESS: {model_name} ready for generation!")
        log_loading(f"πŸ“Š Capabilities: {config['max_frames']} frames @ {config['fps']} fps = {config['max_frames']/config['fps']:.1f}s videos")
        
        return True
        
    except Exception as e:
        log_loading(f"❌ {model_name} failed: {str(e)}")
        # Thorough cleanup
        if HAS_CUDA:
            torch.cuda.empty_cache()
            torch.cuda.synchronize()
        gc.collect()
        return False

@spaces.GPU(duration=300) if SPACES_AVAILABLE else lambda x: x
def generate_video(
    prompt: str,
    negative_prompt: str = "",
    num_frames: int = 49,
    num_inference_steps: int = 50,
    guidance_scale: float = 6.0,
    seed: int = -1
) -> Tuple[Optional[str], str]:
    """Generate video with working model"""
    
    global MODEL, MODEL_INFO
    
    # Load working model
    if not load_working_model():
        logs = "\n".join(LOADING_LOGS[-10:])
        return None, f"❌ No working models could be loaded\n\nDetailed Logs:\n{logs}"
    
    # Input validation
    if not prompt.strip():
        return None, "❌ Please enter a detailed prompt."
    
    if len(prompt) < 5:
        return None, "❌ Please provide a more descriptive prompt."
    
    # Get model specifications
    max_frames = MODEL_INFO["max_frames"]
    width, height = MODEL_INFO["resolution"]
    target_fps = MODEL_INFO["fps"]
    
    # Validate and adjust parameters
    num_frames = min(max(num_frames, 8), max_frames)
    
    # Model-specific optimizations
    if MODEL_INFO["name"].startswith("CogVideoX"):
        # CogVideoX optimal settings
        guidance_scale = max(6.0, min(guidance_scale, 7.0))
        num_inference_steps = max(50, num_inference_steps)
    
    try:
        # H200 memory preparation
        start_memory = torch.cuda.memory_allocated(0) / (1024**3) if HAS_CUDA else 0
        
        # Seed handling
        if seed == -1:
            seed = np.random.randint(0, 2**32 - 1)
        
        device = "cuda" if HAS_CUDA else "cpu"
        generator = torch.Generator(device=device).manual_seed(seed)
        
        log_loading(f"🎬 GENERATION START - {MODEL_INFO['name']}")
        log_loading(f"πŸ“ Prompt: {prompt[:80]}...")
        log_loading(f"πŸ“ Settings: {width}x{height}, {num_frames} frames, {num_inference_steps} steps")
        log_loading(f"🎯 Expected duration: {num_frames/target_fps:.1f} seconds @ {target_fps} fps")
        
        start_time = time.time()
        
        # Generate with proper autocast
        with torch.autocast(device, dtype=MODEL_INFO["dtype"], enabled=HAS_CUDA):
            
            # Prepare generation parameters
            gen_kwargs = {
                "prompt": prompt,
                "height": height,
                "width": width,
                "num_frames": num_frames,
                "num_inference_steps": num_inference_steps,
                "guidance_scale": guidance_scale,
                "generator": generator,
            }
            
            # Enhanced negative prompt for quality
            if negative_prompt.strip():
                gen_kwargs["negative_prompt"] = negative_prompt
            else:
                # Default quality negative prompt
                quality_negative = "blurry, low quality, distorted, pixelated, compression artifacts, static, boring, amateur, watermark, text"
                gen_kwargs["negative_prompt"] = quality_negative
                log_loading(f"🚫 Applied quality negative prompt")
            
            # CogVideoX specific parameters
            if MODEL_INFO["name"].startswith("CogVideoX"):
                gen_kwargs["num_videos_per_prompt"] = 1
                log_loading(f"πŸŽ₯ CogVideoX generation starting...")
            
            # Generate
            log_loading(f"πŸš€ H200 generation in progress...")
            result = MODEL(**gen_kwargs)
        
        end_time = time.time()
        generation_time = end_time - start_time
        
        # Extract frames
        if hasattr(result, 'frames'):
            video_frames = result.frames[0]
            log_loading(f"πŸ“Ή Extracted {len(video_frames)} frames")
        elif hasattr(result, 'videos'):
            video_frames = result.videos[0]
            log_loading(f"πŸ“Ή Extracted video tensor")
        else:
            log_loading(f"❌ Unknown result format")
            return None, "❌ Could not extract video frames"
        
        # Export with correct FPS
        actual_duration = num_frames / target_fps
        
        with tempfile.NamedTemporaryFile(suffix=".mp4", delete=False) as tmp_file:
            from diffusers.utils import export_to_video
            export_to_video(video_frames, tmp_file.name, fps=target_fps)
            video_path = tmp_file.name
            log_loading(f"🎬 Exported: {actual_duration:.1f}s video @ {target_fps} fps")
        
        # Memory usage
        end_memory = torch.cuda.memory_allocated(0) / (1024**3) if HAS_CUDA else 0
        memory_used = end_memory - start_memory
        
        # Success report
        success_msg = f"""🎯 **H200 VIDEO GENERATED SUCCESSFULLY**

πŸ€– **Model:** {MODEL_INFO['name']}
πŸ“ **Prompt:** {prompt}
🎬 **Video:** {num_frames} frames @ {target_fps} fps = **{actual_duration:.1f} seconds**
πŸ“ **Resolution:** {width}x{height}
βš™οΈ **Quality:** {num_inference_steps} inference steps
🎯 **Guidance:** {guidance_scale}
🎲 **Seed:** {seed}
⏱️ **Generation Time:** {generation_time:.1f}s ({generation_time/60:.1f} min)
πŸ–₯️ **Device:** H200 MIG (69.5GB)
πŸ’Ύ **Memory Used:** {memory_used:.1f}GB
πŸ“‹ **Model:** {MODEL_INFO['description']}

**πŸŽ₯ Result:** {actual_duration:.1f} second high-quality video!**"""
        
        log_loading(f"βœ… SUCCESS: {actual_duration:.1f}s video generated in {generation_time:.1f}s")
        
        return video_path, success_msg
        
    except torch.cuda.OutOfMemoryError:
        if HAS_CUDA:
            torch.cuda.empty_cache()
        gc.collect()
        return None, "❌ H200 memory exceeded. Try reducing frames or steps."
    
    except Exception as e:
        if HAS_CUDA:
            torch.cuda.empty_cache()
        gc.collect()
        error_msg = str(e)
        log_loading(f"❌ Generation error: {error_msg}")
        return None, f"❌ Generation failed: {error_msg}"

def get_model_status():
    """Get current model status"""
    if MODEL is None:
        return "⏳ **No model loaded** - will auto-load CogVideoX on first generation"
    
    name = MODEL_INFO['name']
    max_frames = MODEL_INFO['max_frames']
    fps = MODEL_INFO['fps']
    width, height = MODEL_INFO['resolution']
    max_duration = max_frames / fps
    
    return f"""🎯 **{name} READY**

**πŸ“Š Video Capabilities:**
- **Maximum Duration:** {max_duration:.1f} seconds ({max_frames} frames @ {fps} fps)
- **Resolution:** {width}x{height}
- **Quality Level:** {MODEL_INFO['description']}

**⚑ H200 Status:**
- Model fully loaded in GPU memory
- All optimizations enabled
- Ready for {max_duration:.1f} second video generation

**πŸ’‘ This model creates {max_duration:.1f} second videos with {max_frames} frames!**"""

def get_loading_logs():
    """Get formatted loading logs"""
    global LOADING_LOGS
    if not LOADING_LOGS:
        return "No loading logs yet. Click generate to start loading."
    return "\n".join(LOADING_LOGS)

def suggest_optimal_settings():
    """Suggest optimal settings for loaded model"""
    if MODEL is None:
        return "No model loaded yet. Generate a video to auto-load CogVideoX."
    
    name = MODEL_INFO['name']
    max_frames = MODEL_INFO['max_frames']
    fps = MODEL_INFO['fps']
    max_duration = max_frames / fps
    
    return f"""## 🎯 Optimal Settings for {name}

**πŸ† Maximum Quality (Recommended):**
- Frames: {max_frames} (full {max_duration:.1f} second video)
- Inference Steps: 50-70
- Guidance Scale: 6.0-6.5
- Expected Time: 3-5 minutes

**βš–οΈ Balanced Quality:**
- Frames: {max_frames//2} ({max_frames//2/fps:.1f} second video)  
- Inference Steps: 40-50
- Guidance Scale: 6.0
- Expected Time: 2-3 minutes

**⚑ Quick Test:**
- Frames: 25 ({25/fps:.1f} second video)
- Inference Steps: 30-40
- Guidance Scale: 6.0
- Expected Time: 1-2 minutes

**πŸ“ {name} Prompt Tips:**
- Be very specific and detailed
- Describe camera movements: "slow zoom in", "tracking shot", "aerial view"
- Include lighting: "golden hour", "soft lighting", "dramatic shadows"
- Add motion description: "smooth movement", "graceful motion", "flowing"
- Specify style: "cinematic", "professional", "documentary style"

**πŸ† Example Premium Prompt:**
"A majestic eagle soaring gracefully through mountain valleys during golden hour, cinematic aerial tracking shot following the bird's smooth flight path, professional wildlife documentary style with warm sunset lighting, breathtaking landscape vista below"

Remember: {name} excels at smooth, natural motion and cinematic quality!"""

# Create working interface
with gr.Blocks(title="H200 CogVideoX Generator", theme=gr.themes.Soft()) as demo:
    
    gr.Markdown("""
    # 🎯 H200 CogVideoX Video Generator
    
    **CogVideoX-2B/5B Priority** β€’ **6+ Second Videos** β€’ **H200 MIG Optimized**
    """)
    
    # Status indicator
    with gr.Row():
        gr.Markdown("""
        <div style="background: linear-gradient(45deg, #4ECDC4, #44A08D); padding: 12px; border-radius: 12px; text-align: center; color: white; font-weight: bold;">
        πŸš€ H200 MIG 69.5GB - COGVIDEOX READY - 6+ SECOND VIDEOS πŸš€
        </div>
        """)
    
    with gr.Tab("🎬 Generate Video"):
        with gr.Row():
            with gr.Column(scale=1):
                prompt_input = gr.Textbox(
                    label="πŸ“ Detailed Video Prompt",
                    placeholder="A majestic eagle soaring gracefully through mountain valleys during golden hour, cinematic aerial tracking shot following the bird's smooth flight path, professional wildlife documentary style with warm sunset lighting, breathtaking landscape vista below...",
                    lines=4
                )
                
                negative_prompt_input = gr.Textbox(
                    label="🚫 Negative Prompt (Optional)",
                    placeholder="blurry, low quality, distorted, pixelated, static, boring, amateur...",
                    lines=2
                )
                
                with gr.Accordion("βš™οΈ Generation Settings", open=True):
                    with gr.Row():
                        num_frames = gr.Slider(
                            minimum=8,
                            maximum=49,
                            value=49,
                            step=1,
                            label="🎬 Frames (49 = 6+ seconds)"
                        )
                        
                        num_steps = gr.Slider(
                            minimum=30,
                            maximum=70,
                            value=50,
                            step=5,
                            label="βš™οΈ Inference Steps"
                        )
                    
                    with gr.Row():
                        guidance_scale = gr.Slider(
                            minimum=4.0,
                            maximum=8.0,
                            value=6.0,
                            step=0.5,
                            label="🎯 Guidance Scale"
                        )
                        
                        seed = gr.Number(
                            label="🎲 Seed (-1 for random)",
                            value=-1,
                            precision=0
                        )
                
                generate_btn = gr.Button(
                    "🎯 Generate 6+ Second Video", 
                    variant="primary", 
                    size="lg"
                )
                
                gr.Markdown("""
                **⏱️ Generation Time:** 2-5 minutes
                **πŸŽ₯ Output:** 6+ second high-quality videos  
                **πŸ€– Model:** CogVideoX auto-loads first time
                """)
                
            with gr.Column(scale=1):
                video_output = gr.Video(
                    label="πŸŽ₯ H200 Generated Video",
                    height=400
                )
                
                result_text = gr.Textbox(
                    label="πŸ“‹ Generation Report",
                    lines=10,
                    show_copy_button=True
                )
        
        # Generate button
        generate_btn.click(
            fn=generate_video,
            inputs=[
                prompt_input, negative_prompt_input, num_frames,
                num_steps, guidance_scale, seed
            ],
            outputs=[video_output, result_text]
        )
        
        # Working examples
        gr.Examples(
            examples=[
                [
                    "A majestic eagle soaring gracefully through mountain valleys during golden hour, cinematic aerial tracking shot, professional wildlife documentary style",
                    "blurry, low quality, static, amateur",
                    49, 50, 6.0, 42
                ],
                [
                    "Ocean waves crashing against rocky coastline during sunset, slow motion cinematography with dramatic lighting and foam spray",
                    "calm, peaceful, low quality, boring",
                    41, 50, 6.5, 123
                ],
                [
                    "A serene mountain lake reflecting autumn trees, gentle camera pan across the water surface, peaceful nature documentary style",
                    "urban, modern, low quality, distorted",
                    33, 45, 6.0, 456
                ],
                [
                    "Steam rising from a hot coffee cup on wooden table by window during rain, cozy atmosphere with warm lighting, intimate close-up shot",
                    "cold, harsh, artificial, low quality",
                    25, 40, 6.0, 789
                ]
            ],
            inputs=[prompt_input, negative_prompt_input, num_frames, num_steps, guidance_scale, seed]
        )
    
    with gr.Tab("πŸ“Š Model Status"):
        with gr.Row():
            status_btn = gr.Button("πŸ” Check Model Status")
            logs_btn = gr.Button("πŸ“‹ View Loading Logs")
            settings_btn = gr.Button("βš™οΈ Optimal Settings")
        
        status_output = gr.Markdown()
        logs_output = gr.Textbox(label="Loading Logs", lines=15, show_copy_button=True)
        settings_output = gr.Markdown()
        
        status_btn.click(fn=get_model_status, outputs=status_output)
        logs_btn.click(fn=get_loading_logs, outputs=logs_output)
        settings_btn.click(fn=suggest_optimal_settings, outputs=settings_output)
        
        # Auto-load status
        demo.load(fn=get_model_status, outputs=status_output)

if __name__ == "__main__":
    demo.queue(max_size=3)
    demo.launch(
        share=False,
        server_name="0.0.0.0",
        server_port=7860,
        show_error=True
    )