Spaces:
Sleeping
Sleeping
File size: 20,965 Bytes
69f2bad 8e5115d 69f2bad c40d82c 1431767 e6fb807 c40d82c 7358182 e6fb807 8e5115d 05424ef e632d6b 7358182 8e5115d 4dcdb86 7358182 4dcdb86 05424ef 4dcdb86 c40d82c 4dcdb86 c40d82c 05424ef c40d82c 05424ef 4dcdb86 05424ef 4dcdb86 c40d82c 4dcdb86 05424ef c40d82c 05424ef 4dcdb86 05424ef 7a8e438 4dcdb86 05424ef 4dcdb86 05424ef 4dcdb86 7358182 7a8e438 7358182 7a8e438 7358182 7a8e438 c40d82c 7a8e438 c40d82c 05424ef 4dcdb86 05424ef 4dcdb86 05424ef 4dcdb86 7358182 4dcdb86 7a8e438 7358182 7a8e438 4dcdb86 7358182 4dcdb86 7a8e438 4dcdb86 7a8e438 05424ef 4dcdb86 7a8e438 4dcdb86 7a8e438 4dcdb86 7a8e438 05424ef 7a8e438 4dcdb86 7a8e438 4dcdb86 05424ef c40d82c 05424ef 7a8e438 4dcdb86 05424ef 4dcdb86 7a8e438 4dcdb86 05424ef 4dcdb86 c40d82c 4dcdb86 c40d82c 05424ef 4dcdb86 7a8e438 c40d82c 7a8e438 4dcdb86 05424ef 4dcdb86 c40d82c 4dcdb86 7a8e438 05424ef 7a8e438 4dcdb86 7a8e438 4dcdb86 7a8e438 c40d82c 7a8e438 1431767 c40d82c 4dcdb86 8e5115d c40d82c 7a8e438 8e5115d 4dcdb86 e632d6b 7a8e438 7358182 4dcdb86 8e5115d 4dcdb86 c40d82c 4dcdb86 8e5115d 4dcdb86 7358182 4dcdb86 8e5115d 4dcdb86 c40d82c 4dcdb86 e6fb807 8e5115d c40d82c 05424ef 8e5115d 4dcdb86 7358182 8e5115d 7358182 8e5115d 4dcdb86 05424ef 7358182 4dcdb86 c40d82c 05424ef c40d82c 05424ef c40d82c 05424ef 4dcdb86 05424ef c40d82c 4dcdb86 05424ef 4dcdb86 c40d82c 05424ef c40d82c 05424ef 4dcdb86 c40d82c 05424ef 7358182 4dcdb86 05424ef c40d82c 05424ef 4dcdb86 05424ef 4dcdb86 c40d82c 4dcdb86 c40d82c 7358182 c40d82c 7358182 4dcdb86 7358182 4dcdb86 05424ef 7358182 c40d82c 4dcdb86 1431767 4dcdb86 7358182 c40d82c 7358182 c40d82c 7358182 4dcdb86 05424ef 4dcdb86 c40d82c 4dcdb86 05424ef 4dcdb86 7358182 05424ef c40d82c 05424ef 4dcdb86 05424ef 8e5115d 7358182 1431767 e632d6b c40d82c 4dcdb86 c40d82c 4dcdb86 c40d82c 4dcdb86 c40d82c 4dcdb86 c40d82c 4dcdb86 c40d82c 4dcdb86 c40d82c 4dcdb86 c40d82c 4dcdb86 8e5115d 7a8e438 c40d82c 7a8e438 4dcdb86 7a8e438 7358182 4dcdb86 c40d82c 4dcdb86 8e5115d 4dcdb86 c40d82c 4dcdb86 05424ef 4dcdb86 c40d82c 4dcdb86 05424ef 4dcdb86 1431767 4dcdb86 c40d82c 4dcdb86 05424ef 4dcdb86 c40d82c 4dcdb86 c40d82c 4dcdb86 c40d82c 4dcdb86 8e5115d 4dcdb86 8e5115d 4dcdb86 c40d82c 4dcdb86 8e5115d 4dcdb86 05424ef 4dcdb86 05424ef 4dcdb86 8e5115d 4dcdb86 8e5115d 4dcdb86 8e5115d 4dcdb86 05424ef c40d82c 4dcdb86 c40d82c 4dcdb86 c40d82c 4dcdb86 c40d82c 4dcdb86 c40d82c 4dcdb86 c40d82c 4dcdb86 c40d82c 4dcdb86 e6fb807 c40d82c 4dcdb86 c40d82c 8e5115d 05424ef 4dcdb86 05424ef 8e5115d c40d82c 4dcdb86 c40d82c 4dcdb86 c40d82c 8e5115d c40d82c 8e5115d 4dcdb86 c40d82c 4dcdb86 c40d82c 8e5115d 4dcdb86 8e5115d 05424ef 4dcdb86 05424ef 4dcdb86 05424ef 4dcdb86 05424ef 4dcdb86 05424ef 8e5115d 4dcdb86 8e5115d 4dcdb86 7358182 4dcdb86 7a8e438 05424ef 4dcdb86 c40d82c 7a8e438 c40d82c 05424ef 4dcdb86 7a8e438 05424ef c40d82c 8e5115d 4dcdb86 8e5115d 1431767 8e5115d 7a8e438 8e5115d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 |
import gradio as gr
import torch
import os
import gc
import numpy as np
import tempfile
from typing import Optional, Tuple
import time
# ZeroGPU support
try:
import spaces
SPACES_AVAILABLE = True
except ImportError:
SPACES_AVAILABLE = False
class spaces:
@staticmethod
def GPU(duration=300):
def decorator(func): return func
return decorator
# Environment
IS_ZERO_GPU = os.environ.get("SPACES_ZERO_GPU") == "true"
IS_SPACES = os.environ.get("SPACE_ID") is not None
HAS_CUDA = torch.cuda.is_available()
print(f"π H200 CogVideoX Setup: ZeroGPU={IS_ZERO_GPU}, Spaces={IS_SPACES}, CUDA={HAS_CUDA}")
# WORKING MODELS - Tested and confirmed
WORKING_MODELS = [
{
"id": "THUDM/CogVideoX-2b",
"name": "CogVideoX-2B",
"pipeline_class": "CogVideoXPipeline",
"resolution": (720, 480),
"max_frames": 49,
"dtype": torch.bfloat16,
"fps": 8,
"priority": 1,
"description": "2B parameter model - fast and high quality"
},
{
"id": "THUDM/CogVideoX-5b",
"name": "CogVideoX-5B",
"pipeline_class": "CogVideoXPipeline",
"resolution": (720, 480),
"max_frames": 49,
"dtype": torch.bfloat16,
"fps": 8,
"priority": 2,
"description": "5B parameter model - maximum quality"
},
{
"id": "damo-vilab/text-to-video-ms-1.7b",
"name": "ModelScope T2V 1.7B",
"pipeline_class": "DiffusionPipeline",
"resolution": (256, 256),
"max_frames": 16,
"dtype": torch.float16,
"fps": 8,
"priority": 3,
"description": "Reliable fallback model"
}
]
# Global variables
MODEL = None
MODEL_INFO = None
LOADING_LOGS = []
def log_loading(message):
"""Enhanced logging with timestamps"""
global LOADING_LOGS
timestamp = time.strftime('%H:%M:%S')
formatted_msg = f"[{timestamp}] {message}"
print(formatted_msg)
LOADING_LOGS.append(formatted_msg)
def get_h200_memory():
"""Get H200 memory stats"""
if HAS_CUDA:
try:
total = torch.cuda.get_device_properties(0).total_memory / (1024**3)
allocated = torch.cuda.memory_allocated(0) / (1024**3)
return total, allocated
except:
return 0, 0
return 0, 0
def load_working_model():
"""Load first working model - CogVideoX priority"""
global MODEL, MODEL_INFO, LOADING_LOGS
if MODEL is not None:
return True
LOADING_LOGS = []
log_loading("π― H200 Working Model Loading - CogVideoX Priority")
total_mem, allocated_mem = get_h200_memory()
log_loading(f"πΎ H200 Memory: {total_mem:.1f}GB total, {allocated_mem:.1f}GB allocated")
# Try models in priority order
sorted_models = sorted(WORKING_MODELS, key=lambda x: x["priority"])
for model_config in sorted_models:
if try_load_working_model(model_config):
return True
log_loading("β All working models failed")
return False
def try_load_working_model(config):
"""Try loading a specific working model"""
global MODEL, MODEL_INFO
model_id = config["id"]
model_name = config["name"]
log_loading(f"π Loading {model_name}...")
log_loading(f" π Config: {model_id}")
log_loading(f" π― Target: {config['max_frames']} frames, {config['fps']} fps, {config['resolution']}")
try:
# Clear H200 memory first
if HAS_CUDA:
torch.cuda.empty_cache()
torch.cuda.synchronize()
gc.collect()
log_loading(f" π§Ή Memory cleared")
# Import appropriate pipeline
if config["pipeline_class"] == "CogVideoXPipeline":
try:
from diffusers import CogVideoXPipeline
PipelineClass = CogVideoXPipeline
log_loading(f" π₯ Using CogVideoXPipeline")
except ImportError as e:
log_loading(f" β CogVideoXPipeline import failed: {e}")
return False
else:
from diffusers import DiffusionPipeline
PipelineClass = DiffusionPipeline
log_loading(f" π₯ Using DiffusionPipeline")
# Load model with minimal parameters
log_loading(f" π Downloading/Loading {model_name}...")
start_load = time.time()
pipe = PipelineClass.from_pretrained(
model_id,
torch_dtype=config["dtype"],
trust_remote_code=True
)
load_time = time.time() - start_load
log_loading(f" β
Model loaded in {load_time:.1f}s")
# Move to H200 GPU
if HAS_CUDA:
log_loading(f" π± Moving to H200 CUDA...")
pipe = pipe.to("cuda")
torch.cuda.synchronize()
log_loading(f" β
Model on H200 GPU")
# H200 optimizations
if hasattr(pipe, 'enable_vae_slicing'):
pipe.enable_vae_slicing()
log_loading(f" β‘ VAE slicing enabled")
if hasattr(pipe, 'enable_vae_tiling'):
pipe.enable_vae_tiling()
log_loading(f" β‘ VAE tiling enabled")
if hasattr(pipe, 'enable_memory_efficient_attention'):
pipe.enable_memory_efficient_attention()
log_loading(f" β‘ Memory efficient attention enabled")
# Memory check after setup
total_mem, allocated_mem = get_h200_memory()
log_loading(f" πΎ Final memory: {allocated_mem:.1f}GB / {total_mem:.1f}GB")
MODEL = pipe
MODEL_INFO = config
log_loading(f"π― SUCCESS: {model_name} ready for generation!")
log_loading(f"π Capabilities: {config['max_frames']} frames @ {config['fps']} fps = {config['max_frames']/config['fps']:.1f}s videos")
return True
except Exception as e:
log_loading(f"β {model_name} failed: {str(e)}")
# Thorough cleanup
if HAS_CUDA:
torch.cuda.empty_cache()
torch.cuda.synchronize()
gc.collect()
return False
@spaces.GPU(duration=300) if SPACES_AVAILABLE else lambda x: x
def generate_video(
prompt: str,
negative_prompt: str = "",
num_frames: int = 49,
num_inference_steps: int = 50,
guidance_scale: float = 6.0,
seed: int = -1
) -> Tuple[Optional[str], str]:
"""Generate video with working model"""
global MODEL, MODEL_INFO
# Load working model
if not load_working_model():
logs = "\n".join(LOADING_LOGS[-10:])
return None, f"β No working models could be loaded\n\nDetailed Logs:\n{logs}"
# Input validation
if not prompt.strip():
return None, "β Please enter a detailed prompt."
if len(prompt) < 5:
return None, "β Please provide a more descriptive prompt."
# Get model specifications
max_frames = MODEL_INFO["max_frames"]
width, height = MODEL_INFO["resolution"]
target_fps = MODEL_INFO["fps"]
# Validate and adjust parameters
num_frames = min(max(num_frames, 8), max_frames)
# Model-specific optimizations
if MODEL_INFO["name"].startswith("CogVideoX"):
# CogVideoX optimal settings
guidance_scale = max(6.0, min(guidance_scale, 7.0))
num_inference_steps = max(50, num_inference_steps)
try:
# H200 memory preparation
start_memory = torch.cuda.memory_allocated(0) / (1024**3) if HAS_CUDA else 0
# Seed handling
if seed == -1:
seed = np.random.randint(0, 2**32 - 1)
device = "cuda" if HAS_CUDA else "cpu"
generator = torch.Generator(device=device).manual_seed(seed)
log_loading(f"π¬ GENERATION START - {MODEL_INFO['name']}")
log_loading(f"π Prompt: {prompt[:80]}...")
log_loading(f"π Settings: {width}x{height}, {num_frames} frames, {num_inference_steps} steps")
log_loading(f"π― Expected duration: {num_frames/target_fps:.1f} seconds @ {target_fps} fps")
start_time = time.time()
# Generate with proper autocast
with torch.autocast(device, dtype=MODEL_INFO["dtype"], enabled=HAS_CUDA):
# Prepare generation parameters
gen_kwargs = {
"prompt": prompt,
"height": height,
"width": width,
"num_frames": num_frames,
"num_inference_steps": num_inference_steps,
"guidance_scale": guidance_scale,
"generator": generator,
}
# Enhanced negative prompt for quality
if negative_prompt.strip():
gen_kwargs["negative_prompt"] = negative_prompt
else:
# Default quality negative prompt
quality_negative = "blurry, low quality, distorted, pixelated, compression artifacts, static, boring, amateur, watermark, text"
gen_kwargs["negative_prompt"] = quality_negative
log_loading(f"π« Applied quality negative prompt")
# CogVideoX specific parameters
if MODEL_INFO["name"].startswith("CogVideoX"):
gen_kwargs["num_videos_per_prompt"] = 1
log_loading(f"π₯ CogVideoX generation starting...")
# Generate
log_loading(f"π H200 generation in progress...")
result = MODEL(**gen_kwargs)
end_time = time.time()
generation_time = end_time - start_time
# Extract frames
if hasattr(result, 'frames'):
video_frames = result.frames[0]
log_loading(f"πΉ Extracted {len(video_frames)} frames")
elif hasattr(result, 'videos'):
video_frames = result.videos[0]
log_loading(f"πΉ Extracted video tensor")
else:
log_loading(f"β Unknown result format")
return None, "β Could not extract video frames"
# Export with correct FPS
actual_duration = num_frames / target_fps
with tempfile.NamedTemporaryFile(suffix=".mp4", delete=False) as tmp_file:
from diffusers.utils import export_to_video
export_to_video(video_frames, tmp_file.name, fps=target_fps)
video_path = tmp_file.name
log_loading(f"π¬ Exported: {actual_duration:.1f}s video @ {target_fps} fps")
# Memory usage
end_memory = torch.cuda.memory_allocated(0) / (1024**3) if HAS_CUDA else 0
memory_used = end_memory - start_memory
# Success report
success_msg = f"""π― **H200 VIDEO GENERATED SUCCESSFULLY**
π€ **Model:** {MODEL_INFO['name']}
π **Prompt:** {prompt}
π¬ **Video:** {num_frames} frames @ {target_fps} fps = **{actual_duration:.1f} seconds**
π **Resolution:** {width}x{height}
βοΈ **Quality:** {num_inference_steps} inference steps
π― **Guidance:** {guidance_scale}
π² **Seed:** {seed}
β±οΈ **Generation Time:** {generation_time:.1f}s ({generation_time/60:.1f} min)
π₯οΈ **Device:** H200 MIG (69.5GB)
πΎ **Memory Used:** {memory_used:.1f}GB
π **Model:** {MODEL_INFO['description']}
**π₯ Result:** {actual_duration:.1f} second high-quality video!**"""
log_loading(f"β
SUCCESS: {actual_duration:.1f}s video generated in {generation_time:.1f}s")
return video_path, success_msg
except torch.cuda.OutOfMemoryError:
if HAS_CUDA:
torch.cuda.empty_cache()
gc.collect()
return None, "β H200 memory exceeded. Try reducing frames or steps."
except Exception as e:
if HAS_CUDA:
torch.cuda.empty_cache()
gc.collect()
error_msg = str(e)
log_loading(f"β Generation error: {error_msg}")
return None, f"β Generation failed: {error_msg}"
def get_model_status():
"""Get current model status"""
if MODEL is None:
return "β³ **No model loaded** - will auto-load CogVideoX on first generation"
name = MODEL_INFO['name']
max_frames = MODEL_INFO['max_frames']
fps = MODEL_INFO['fps']
width, height = MODEL_INFO['resolution']
max_duration = max_frames / fps
return f"""π― **{name} READY**
**π Video Capabilities:**
- **Maximum Duration:** {max_duration:.1f} seconds ({max_frames} frames @ {fps} fps)
- **Resolution:** {width}x{height}
- **Quality Level:** {MODEL_INFO['description']}
**β‘ H200 Status:**
- Model fully loaded in GPU memory
- All optimizations enabled
- Ready for {max_duration:.1f} second video generation
**π‘ This model creates {max_duration:.1f} second videos with {max_frames} frames!**"""
def get_loading_logs():
"""Get formatted loading logs"""
global LOADING_LOGS
if not LOADING_LOGS:
return "No loading logs yet. Click generate to start loading."
return "\n".join(LOADING_LOGS)
def suggest_optimal_settings():
"""Suggest optimal settings for loaded model"""
if MODEL is None:
return "No model loaded yet. Generate a video to auto-load CogVideoX."
name = MODEL_INFO['name']
max_frames = MODEL_INFO['max_frames']
fps = MODEL_INFO['fps']
max_duration = max_frames / fps
return f"""## π― Optimal Settings for {name}
**π Maximum Quality (Recommended):**
- Frames: {max_frames} (full {max_duration:.1f} second video)
- Inference Steps: 50-70
- Guidance Scale: 6.0-6.5
- Expected Time: 3-5 minutes
**βοΈ Balanced Quality:**
- Frames: {max_frames//2} ({max_frames//2/fps:.1f} second video)
- Inference Steps: 40-50
- Guidance Scale: 6.0
- Expected Time: 2-3 minutes
**β‘ Quick Test:**
- Frames: 25 ({25/fps:.1f} second video)
- Inference Steps: 30-40
- Guidance Scale: 6.0
- Expected Time: 1-2 minutes
**π {name} Prompt Tips:**
- Be very specific and detailed
- Describe camera movements: "slow zoom in", "tracking shot", "aerial view"
- Include lighting: "golden hour", "soft lighting", "dramatic shadows"
- Add motion description: "smooth movement", "graceful motion", "flowing"
- Specify style: "cinematic", "professional", "documentary style"
**π Example Premium Prompt:**
"A majestic eagle soaring gracefully through mountain valleys during golden hour, cinematic aerial tracking shot following the bird's smooth flight path, professional wildlife documentary style with warm sunset lighting, breathtaking landscape vista below"
Remember: {name} excels at smooth, natural motion and cinematic quality!"""
# Create working interface
with gr.Blocks(title="H200 CogVideoX Generator", theme=gr.themes.Soft()) as demo:
gr.Markdown("""
# π― H200 CogVideoX Video Generator
**CogVideoX-2B/5B Priority** β’ **6+ Second Videos** β’ **H200 MIG Optimized**
""")
# Status indicator
with gr.Row():
gr.Markdown("""
<div style="background: linear-gradient(45deg, #4ECDC4, #44A08D); padding: 12px; border-radius: 12px; text-align: center; color: white; font-weight: bold;">
π H200 MIG 69.5GB - COGVIDEOX READY - 6+ SECOND VIDEOS π
</div>
""")
with gr.Tab("π¬ Generate Video"):
with gr.Row():
with gr.Column(scale=1):
prompt_input = gr.Textbox(
label="π Detailed Video Prompt",
placeholder="A majestic eagle soaring gracefully through mountain valleys during golden hour, cinematic aerial tracking shot following the bird's smooth flight path, professional wildlife documentary style with warm sunset lighting, breathtaking landscape vista below...",
lines=4
)
negative_prompt_input = gr.Textbox(
label="π« Negative Prompt (Optional)",
placeholder="blurry, low quality, distorted, pixelated, static, boring, amateur...",
lines=2
)
with gr.Accordion("βοΈ Generation Settings", open=True):
with gr.Row():
num_frames = gr.Slider(
minimum=8,
maximum=49,
value=49,
step=1,
label="π¬ Frames (49 = 6+ seconds)"
)
num_steps = gr.Slider(
minimum=30,
maximum=70,
value=50,
step=5,
label="βοΈ Inference Steps"
)
with gr.Row():
guidance_scale = gr.Slider(
minimum=4.0,
maximum=8.0,
value=6.0,
step=0.5,
label="π― Guidance Scale"
)
seed = gr.Number(
label="π² Seed (-1 for random)",
value=-1,
precision=0
)
generate_btn = gr.Button(
"π― Generate 6+ Second Video",
variant="primary",
size="lg"
)
gr.Markdown("""
**β±οΈ Generation Time:** 2-5 minutes
**π₯ Output:** 6+ second high-quality videos
**π€ Model:** CogVideoX auto-loads first time
""")
with gr.Column(scale=1):
video_output = gr.Video(
label="π₯ H200 Generated Video",
height=400
)
result_text = gr.Textbox(
label="π Generation Report",
lines=10,
show_copy_button=True
)
# Generate button
generate_btn.click(
fn=generate_video,
inputs=[
prompt_input, negative_prompt_input, num_frames,
num_steps, guidance_scale, seed
],
outputs=[video_output, result_text]
)
# Working examples
gr.Examples(
examples=[
[
"A majestic eagle soaring gracefully through mountain valleys during golden hour, cinematic aerial tracking shot, professional wildlife documentary style",
"blurry, low quality, static, amateur",
49, 50, 6.0, 42
],
[
"Ocean waves crashing against rocky coastline during sunset, slow motion cinematography with dramatic lighting and foam spray",
"calm, peaceful, low quality, boring",
41, 50, 6.5, 123
],
[
"A serene mountain lake reflecting autumn trees, gentle camera pan across the water surface, peaceful nature documentary style",
"urban, modern, low quality, distorted",
33, 45, 6.0, 456
],
[
"Steam rising from a hot coffee cup on wooden table by window during rain, cozy atmosphere with warm lighting, intimate close-up shot",
"cold, harsh, artificial, low quality",
25, 40, 6.0, 789
]
],
inputs=[prompt_input, negative_prompt_input, num_frames, num_steps, guidance_scale, seed]
)
with gr.Tab("π Model Status"):
with gr.Row():
status_btn = gr.Button("π Check Model Status")
logs_btn = gr.Button("π View Loading Logs")
settings_btn = gr.Button("βοΈ Optimal Settings")
status_output = gr.Markdown()
logs_output = gr.Textbox(label="Loading Logs", lines=15, show_copy_button=True)
settings_output = gr.Markdown()
status_btn.click(fn=get_model_status, outputs=status_output)
logs_btn.click(fn=get_loading_logs, outputs=logs_output)
settings_btn.click(fn=suggest_optimal_settings, outputs=settings_output)
# Auto-load status
demo.load(fn=get_model_status, outputs=status_output)
if __name__ == "__main__":
demo.queue(max_size=3)
demo.launch(
share=False,
server_name="0.0.0.0",
server_port=7860,
show_error=True
) |