Spaces:
Runtime error
Runtime error
File size: 1,325 Bytes
b05aa6a 8a63e04 b05aa6a 7413961 b05aa6a 5888543 b05aa6a 9caa677 b05aa6a 5888543 a012f3a 5888543 a012f3a 5888543 7a385ac 7413961 5888543 7a385ac 7413961 5888543 7413961 b05aa6a a012f3a 5888543 b05aa6a a012f3a 5888543 b05aa6a 5888543 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 |
import numpy as np
import clip
import torch
import gradio as gr
from PIL import Image
import os
# Load the CLIP model
model, preprocess = clip.load("ViT-B/32")
device = "cuda" if torch.cuda.is_available() else "cpu"
model.to(device).eval()
# Define the Business Listing variable
Business_Listing = "Air Guide"
def find_similarity(image, text_input):
# Preprocess the uploaded image
image = preprocess(image).unsqueeze(0).to(device)
# Prepare input text
text_tokens = clip.tokenize([text_input]).to(device)
# Encode image and text features
with torch.no_grad():
image_features = model.encode_image(image)
text_features = model.encode_text(text_tokens)
# Normalize features and calculate similarity
image_features /= image_features.norm(dim=-1, keepdim=True)
text_features /= text_features.norm(dim=-1, keepdim=True)
similarity = (text_features @ image_features.T).squeeze(0).cpu().numpy()
return similarity[0, 0]
# Define a Gradio interface
iface = gr.Interface(
fn=find_similarity,
inputs=[gr.Image(type="pil"), "text"],
outputs="number",
live=True,
interpretation="default",
title="CLIP Model Image-Text Cosine Similarity",
description="Upload an image and enter text to find their cosine similarity.",
)
iface.launch() |