Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,65 +1,49 @@
|
|
1 |
-
import clip
|
2 |
import numpy as np
|
3 |
import torch
|
4 |
import gradio as gr
|
5 |
from PIL import Image
|
6 |
import os
|
7 |
|
|
|
8 |
# Load the CLIP model
|
9 |
model, preprocess = clip.load("ViT-B/32")
|
10 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
11 |
model.to(device).eval()
|
12 |
-
print(device)
|
13 |
|
14 |
# Define the Business Listing variable
|
15 |
Business_Listing = "Air Guide"
|
16 |
|
17 |
-
def find_similarity(
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
image_features = []
|
22 |
-
|
23 |
-
# Preprocess and encode the two images
|
24 |
-
for image in [image1, image2]:
|
25 |
-
image = preprocess(image).unsqueeze(0).to(device)
|
26 |
-
with torch.no_grad():
|
27 |
-
image_feature = model.encode_image(image).float()
|
28 |
-
image_features.append(image_feature)
|
29 |
-
|
30 |
# Prepare input text
|
31 |
text_tokens = clip.tokenize([text_input]).to(device)
|
32 |
-
text_features = model.encode_text(text_tokens).float()
|
33 |
|
34 |
-
#
|
35 |
-
|
36 |
|
37 |
-
|
|
|
|
|
38 |
|
39 |
-
#
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
similarities.append(similarity[0, 0])
|
44 |
|
45 |
-
|
46 |
-
best_match_index = 0 if similarities[0] > similarities[1] else 1
|
47 |
|
48 |
-
return similarities, best_match_index
|
49 |
|
50 |
# Define a Gradio interface
|
51 |
iface = gr.Interface(
|
52 |
fn=find_similarity,
|
53 |
-
inputs=[
|
54 |
-
|
55 |
-
gr.Image(type="pil", label="Image 2"),
|
56 |
-
"text"
|
57 |
-
],
|
58 |
-
outputs=["text", "number"],
|
59 |
live=True,
|
60 |
interpretation="default",
|
61 |
title="CLIP Model Image-Text Cosine Similarity",
|
62 |
-
description="Upload
|
63 |
)
|
64 |
|
65 |
-
iface.launch()
|
|
|
|
|
1 |
import numpy as np
|
2 |
import torch
|
3 |
import gradio as gr
|
4 |
from PIL import Image
|
5 |
import os
|
6 |
|
7 |
+
|
8 |
# Load the CLIP model
|
9 |
model, preprocess = clip.load("ViT-B/32")
|
10 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
11 |
model.to(device).eval()
|
|
|
12 |
|
13 |
# Define the Business Listing variable
|
14 |
Business_Listing = "Air Guide"
|
15 |
|
16 |
+
def find_similarity(image, text_input):
|
17 |
+
# Preprocess the uploaded image
|
18 |
+
image = preprocess(image).unsqueeze(0).to(device)
|
19 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
20 |
# Prepare input text
|
21 |
text_tokens = clip.tokenize([text_input]).to(device)
|
|
|
22 |
|
23 |
+
# Encode image and text features
|
24 |
+
|
25 |
|
26 |
+
with torch.no_grad():
|
27 |
+
image_features = model.encode_image(image).float()
|
28 |
+
text_features = model.encode_text(text_tokens).float()
|
29 |
|
30 |
+
# Normalize features and calculate similarity
|
31 |
+
image_features /= image_features.norm(dim=-1, keepdim=True)
|
32 |
+
text_features /= text_features.norm(dim=-1, keepdim=True)
|
33 |
+
similarity = (text_features @ image_features.T).cpu().numpy()
|
|
|
34 |
|
35 |
+
return similarity[0, 0]
|
|
|
36 |
|
|
|
37 |
|
38 |
# Define a Gradio interface
|
39 |
iface = gr.Interface(
|
40 |
fn=find_similarity,
|
41 |
+
inputs=[gr.Image(type="pil"), "text"],
|
42 |
+
outputs="number",
|
|
|
|
|
|
|
|
|
43 |
live=True,
|
44 |
interpretation="default",
|
45 |
title="CLIP Model Image-Text Cosine Similarity",
|
46 |
+
description="Upload an image and enter text to find their cosine similarity.",
|
47 |
)
|
48 |
|
49 |
+
iface.launch()
|