Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -5,75 +5,40 @@ import gradio as gr
|
|
5 |
|
6 |
# Load the CLIP model
|
7 |
model, preprocess = clip.load("ViT-B/32")
|
8 |
-
device = "cuda" if torch.cuda.
|
9 |
model.to(device).eval()
|
10 |
|
11 |
# Define the Business Listing variable
|
12 |
Business_Listing = "Air Guide"
|
13 |
|
14 |
-
def
|
15 |
-
#
|
16 |
-
|
17 |
|
18 |
-
#
|
19 |
-
|
20 |
-
|
21 |
-
#
|
22 |
-
num_rows = 4
|
23 |
-
num_cols = 8
|
24 |
-
|
25 |
-
original_images = []
|
26 |
-
images = []
|
27 |
-
texts = []
|
28 |
-
|
29 |
-
# Load and preprocess images
|
30 |
-
image_extensions = ['.jpg', '.jpeg', '.png', '.gif', '.bmp', '.tiff', '.webp', '.ico', '.svg', '.eps', '.pdf']
|
31 |
-
for filename in [filename for filename in os.listdir(image_dir) if any(filename.endswith(ext) for ext in image_extensions)]:
|
32 |
-
# Get the image name (without extension)
|
33 |
-
image_name, _ = os.path.splitext(filename)
|
34 |
-
|
35 |
-
# Load the image
|
36 |
-
image = Image.open(os.path.join(image_dir, filename)).convert("RGB")
|
37 |
-
original_images.append(image)
|
38 |
-
images.append(preprocess(image))
|
39 |
-
texts.append(description)
|
40 |
-
|
41 |
-
# Prepare input text and images
|
42 |
-
image_input = torch.tensor(np.stack(images)).to(device)
|
43 |
-
text_tokens = clip.tokenize([f"This is {text_input}"])
|
44 |
-
text_tokens = text_tokens.to(device)
|
45 |
-
|
46 |
-
# Encode text and image features
|
47 |
with torch.no_grad():
|
48 |
-
image_features = model.encode_image(
|
49 |
text_features = model.encode_text(text_tokens).float()
|
50 |
-
|
51 |
# Normalize features and calculate similarity
|
52 |
image_features /= image_features.norm(dim=-1, keepdim=True)
|
53 |
text_features /= text_features.norm(dim=-1, keepdim=True)
|
54 |
-
similarity = text_features
|
55 |
-
|
56 |
-
|
57 |
-
max_similarity_value = similarity[0, :].max()
|
58 |
-
|
59 |
-
# Find all indices with the maximum similarity value
|
60 |
-
max_similarity_indices = np.where(similarity[0, :] == max_similarity_value)
|
61 |
-
|
62 |
-
# Get the filenames with the highest similarity
|
63 |
-
valid_extensions = ('.jpg', '.jpeg', '.png', '.gif', '.bmp', '.tiff', '.webp', '.ico', '.svg', '.eps', '.pdf')
|
64 |
-
image_files = [filename for filename in os.listdir(image_dir) if filename.endswith(valid_extensions)]
|
65 |
-
filenames_with_highest_similarity = [image_files[i] for i in max_similarity_indices[0]]
|
66 |
-
|
67 |
-
return filenames_with_highest_similarity, max_similarity_value
|
68 |
|
69 |
# Define a Gradio interface
|
70 |
iface = gr.Interface(
|
71 |
-
fn=
|
72 |
-
inputs="text",
|
73 |
-
outputs=
|
74 |
live=True,
|
75 |
interpretation="default",
|
76 |
-
title="CLIP Model Image
|
|
|
77 |
)
|
78 |
|
79 |
iface.launch()
|
|
|
5 |
|
6 |
# Load the CLIP model
|
7 |
model, preprocess = clip.load("ViT-B/32")
|
8 |
+
device = "cuda" if torch.cuda.is available() else "cpu"
|
9 |
model.to(device).eval()
|
10 |
|
11 |
# Define the Business Listing variable
|
12 |
Business_Listing = "Air Guide"
|
13 |
|
14 |
+
def find_similarity(image, text_input):
|
15 |
+
# Preprocess the uploaded image
|
16 |
+
image = preprocess(image).unsqueeze(0).to(device)
|
17 |
|
18 |
+
# Prepare input text
|
19 |
+
text_tokens = clip.tokenize([text_input]).to(device)
|
20 |
+
|
21 |
+
# Encode image and text features
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
22 |
with torch.no_grad():
|
23 |
+
image_features = model.encode_image(image).float()
|
24 |
text_features = model.encode_text(text_tokens).float()
|
25 |
+
|
26 |
# Normalize features and calculate similarity
|
27 |
image_features /= image_features.norm(dim=-1, keepdim=True)
|
28 |
text_features /= text_features.norm(dim=-1, keepdim=True)
|
29 |
+
similarity = (text_features @ image_features.T).cpu().numpy()
|
30 |
+
|
31 |
+
return similarity[0, 0]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
32 |
|
33 |
# Define a Gradio interface
|
34 |
iface = gr.Interface(
|
35 |
+
fn=find_similarity,
|
36 |
+
inputs=[gr.Image(type="pil"), "text"],
|
37 |
+
outputs="number",
|
38 |
live=True,
|
39 |
interpretation="default",
|
40 |
+
title="CLIP Model Image-Text Cosine Similarity",
|
41 |
+
description="Upload an image and enter text to find their cosine similarity.",
|
42 |
)
|
43 |
|
44 |
iface.launch()
|