Spaces:
Runtime error
Runtime error
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,79 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import clip
|
2 |
+
import numpy as np
|
3 |
+
import torch
|
4 |
+
import gradio as gr
|
5 |
+
|
6 |
+
# Load the CLIP model
|
7 |
+
model, preprocess = clip.load("ViT-B/32")
|
8 |
+
device = "cuda" if torch.cuda.is_available() else "cpu" # Check for GPU availability
|
9 |
+
model.to(device).eval()
|
10 |
+
|
11 |
+
# Define the Business Listing variable
|
12 |
+
Business_Listing = "Air Guide"
|
13 |
+
|
14 |
+
def find_similar_images(text_input):
|
15 |
+
# Directory where you want to load images
|
16 |
+
image_dir = "/content/sample_data/Tourism"
|
17 |
+
|
18 |
+
# Create an empty description dictionary
|
19 |
+
description = f"{Business_Listing} Logo"
|
20 |
+
|
21 |
+
# Set up the layout for displaying images
|
22 |
+
num_rows = 4
|
23 |
+
num_cols = 8
|
24 |
+
|
25 |
+
original_images = []
|
26 |
+
images = []
|
27 |
+
texts = []
|
28 |
+
|
29 |
+
# Load and preprocess images
|
30 |
+
image_extensions = ['.jpg', '.jpeg', '.png', '.gif', '.bmp', '.tiff', '.webp', '.ico', '.svg', '.eps', '.pdf']
|
31 |
+
for filename in [filename for filename in os.listdir(image_dir) if any(filename.endswith(ext) for ext in image_extensions)]:
|
32 |
+
# Get the image name (without extension)
|
33 |
+
image_name, _ = os.path.splitext(filename)
|
34 |
+
|
35 |
+
# Load the image
|
36 |
+
image = Image.open(os.path.join(image_dir, filename)).convert("RGB")
|
37 |
+
original_images.append(image)
|
38 |
+
images.append(preprocess(image))
|
39 |
+
texts.append(description)
|
40 |
+
|
41 |
+
# Prepare input text and images
|
42 |
+
image_input = torch.tensor(np.stack(images)).to(device)
|
43 |
+
text_tokens = clip.tokenize([f"This is {text_input}"])
|
44 |
+
text_tokens = text_tokens.to(device)
|
45 |
+
|
46 |
+
# Encode text and image features
|
47 |
+
with torch.no_grad():
|
48 |
+
image_features = model.encode_image(image_input).float()
|
49 |
+
text_features = model.encode_text(text_tokens).float()
|
50 |
+
|
51 |
+
# Normalize features and calculate similarity
|
52 |
+
image_features /= image_features.norm(dim=-1, keepdim=True)
|
53 |
+
text_features /= text_features.norm(dim=-1, keepdim=True)
|
54 |
+
similarity = text_features.cpu().numpy() @ image_features.cpu().numpy().T
|
55 |
+
|
56 |
+
# Find the maximum similarity value
|
57 |
+
max_similarity_value = similarity[0, :].max()
|
58 |
+
|
59 |
+
# Find all indices with the maximum similarity value
|
60 |
+
max_similarity_indices = np.where(similarity[0, :] == max_similarity_value)
|
61 |
+
|
62 |
+
# Get the filenames with the highest similarity
|
63 |
+
valid_extensions = ('.jpg', '.jpeg', '.png', '.gif', '.bmp', '.tiff', '.webp', '.ico', '.svg', '.eps', '.pdf')
|
64 |
+
image_files = [filename for filename in os.listdir(image_dir) if filename.endswith(valid_extensions)]
|
65 |
+
filenames_with_highest_similarity = [image_files[i] for i in max_similarity_indices[0]]
|
66 |
+
|
67 |
+
return filenames_with_highest_similarity, max_similarity_value
|
68 |
+
|
69 |
+
# Define a Gradio interface
|
70 |
+
iface = gr.Interface(
|
71 |
+
fn=find_similar_images,
|
72 |
+
inputs="text",
|
73 |
+
outputs=["text", "number"],
|
74 |
+
live=True,
|
75 |
+
interpretation="default",
|
76 |
+
title="CLIP Model Image Search",
|
77 |
+
)
|
78 |
+
|
79 |
+
iface.launch()
|