Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -2,6 +2,8 @@ import clip
|
|
| 2 |
import numpy as np
|
| 3 |
import torch
|
| 4 |
import gradio as gr
|
|
|
|
|
|
|
| 5 |
|
| 6 |
# Load the CLIP model
|
| 7 |
model, preprocess = clip.load("ViT-B/32")
|
|
@@ -12,34 +14,45 @@ print(device)
|
|
| 12 |
# Define the Business Listing variable
|
| 13 |
Business_Listing = "Air Guide"
|
| 14 |
|
| 15 |
-
def find_similarity(
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 19 |
# Prepare input text
|
| 20 |
text_tokens = clip.tokenize([text_input]).to(device)
|
|
|
|
| 21 |
|
| 22 |
-
#
|
| 23 |
-
with torch.no_grad():
|
| 24 |
-
image_features = model.encode_image(image).float()
|
| 25 |
-
text_features = model.encode_text(text_tokens).float()
|
| 26 |
-
|
| 27 |
-
# Normalize features and calculate similarity
|
| 28 |
-
image_features /= image_features.norm(dim=-1, keepdim=True)
|
| 29 |
text_features /= text_features.norm(dim=-1, keepdim=True)
|
| 30 |
-
similarity = (text_features @ image_features.T).cpu().numpy()
|
| 31 |
|
| 32 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 33 |
|
| 34 |
# Define a Gradio interface
|
| 35 |
iface = gr.Interface(
|
| 36 |
fn=find_similarity,
|
| 37 |
-
inputs=[gr.Image(type="pil"), "text"],
|
| 38 |
-
outputs="number",
|
| 39 |
live=True,
|
| 40 |
interpretation="default",
|
| 41 |
title="CLIP Model Image-Text Cosine Similarity",
|
| 42 |
-
description="Upload
|
| 43 |
)
|
| 44 |
|
| 45 |
iface.launch()
|
|
|
|
| 2 |
import numpy as np
|
| 3 |
import torch
|
| 4 |
import gradio as gr
|
| 5 |
+
from PIL import Image
|
| 6 |
+
import os
|
| 7 |
|
| 8 |
# Load the CLIP model
|
| 9 |
model, preprocess = clip.load("ViT-B/32")
|
|
|
|
| 14 |
# Define the Business Listing variable
|
| 15 |
Business_Listing = "Air Guide"
|
| 16 |
|
| 17 |
+
def find_similarity(images, text_input):
|
| 18 |
+
image_features = []
|
| 19 |
+
|
| 20 |
+
# Preprocess and encode multiple images
|
| 21 |
+
for image in images:
|
| 22 |
+
image = preprocess(image).unsqueeze(0).to(device)
|
| 23 |
+
with torch.no_grad():
|
| 24 |
+
image_feature = model.encode_image(image).float()
|
| 25 |
+
image_features.append(image_feature)
|
| 26 |
+
|
| 27 |
# Prepare input text
|
| 28 |
text_tokens = clip.tokenize([text_input]).to(device)
|
| 29 |
+
text_features = model.encode_text(text_tokens).float()
|
| 30 |
|
| 31 |
+
# Normalize text features
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 32 |
text_features /= text_features.norm(dim=-1, keepdim=True)
|
|
|
|
| 33 |
|
| 34 |
+
similarities = []
|
| 35 |
+
|
| 36 |
+
# Calculate cosine similarity for each image
|
| 37 |
+
for image_feature in image_features:
|
| 38 |
+
image_feature /= image_feature.norm(dim=-1, keepdim=True)
|
| 39 |
+
similarity = (text_features @ image_feature.T).cpu().numpy()
|
| 40 |
+
similarities.append(similarity[0, 0])
|
| 41 |
+
|
| 42 |
+
# Find the index of the image with the highest similarity
|
| 43 |
+
best_match_index = np.argmax(similarities)
|
| 44 |
+
|
| 45 |
+
return similarities, best_match_index
|
| 46 |
|
| 47 |
# Define a Gradio interface
|
| 48 |
iface = gr.Interface(
|
| 49 |
fn=find_similarity,
|
| 50 |
+
inputs=[gr.Image(type="pil", label="Image 1"), gr.Image(type="pil", label="Image 2"), "text"],
|
| 51 |
+
outputs=["text", "number"],
|
| 52 |
live=True,
|
| 53 |
interpretation="default",
|
| 54 |
title="CLIP Model Image-Text Cosine Similarity",
|
| 55 |
+
description="Upload two images and enter text to find their cosine similarity.",
|
| 56 |
)
|
| 57 |
|
| 58 |
iface.launch()
|