File size: 5,828 Bytes
dc428aa
ed5c13a
 
 
 
 
 
 
 
 
 
 
1ef76af
ed5c13a
 
 
 
 
 
 
173f267
ed5c13a
 
 
173f267
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ed5c13a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
938fc35
ed5c13a
 
 
 
 
 
b342da6
 
ed5c13a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
173f267
 
 
 
 
 
 
 
 
ed5c13a
 
 
 
 
 
 
a77b32c
 
 
ed5c13a
 
b342da6
84bd09f
ed5c13a
 
 
680dc0a
 
 
 
b342da6
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
import os
import gradio as gr
import logging
from roboflow import Roboflow
from PIL import Image, ImageDraw
import cv2
import numpy as np
from math import atan2, degrees

# Configure logging
logging.basicConfig(
    level=logging.DEBUG,
    format="%(asctime)s - %(levelname)s - %(message)s",
    handlers=[
        logging.FileHandler("debug.log"),
        logging.StreamHandler()
    ]
)

# Roboflow and model configuration
ROBOFLOW_API_KEY = "KUP9w62eUcD5PrrRMJsV"
PROJECT_NAME = "model_verification_project"
VERSION_NUMBER = 2

def detect_paper_angle(image, bounding_box):
    x1, y1, x2, y2 = bounding_box
    roi = np.array(image)[y1:y2, x1:x2]
    gray = cv2.cvtColor(roi, cv2.COLOR_RGBA2GRAY)
    edges = cv2.Canny(gray, 50, 150)
    lines = cv2.HoughLinesP(edges, 1, np.pi / 180, threshold=100, minLineLength=50, maxLineGap=10)
    if lines is not None:
        longest_line = max(
            lines, key=lambda line: np.linalg.norm((line[0][2] - line[0][0], line[0][3] - line[0][1]))
        )
        x1_line, y1_line, x2_line, y2_line = longest_line[0]
        dx = x2_line - x1_line
        dy = y2_line - y1_line
        angle = degrees(atan2(dy, dx))
        return angle
    else:
        return 0

def process_image(image, text):
    try:
        # Initialize Roboflow
        rf = Roboflow(api_key=ROBOFLOW_API_KEY)
        logging.debug("Initialized Roboflow API.")
        project = rf.workspace().project(PROJECT_NAME)
        logging.debug("Accessed project in Roboflow.")
        model = project.version(VERSION_NUMBER).model
        logging.debug("Loaded model from Roboflow.")

        # Save input image temporarily
        input_image_path = "/tmp/input_image.jpg"
        image.save(input_image_path)
        logging.debug(f"Input image saved to {input_image_path}.")

        # Perform inference
        logging.debug("Performing inference on the image...")
        prediction = model.predict(input_image_path, confidence=70, overlap=50).json()
        logging.debug(f"Inference result: {prediction}")

        pil_image = image.convert("RGBA")
        logging.debug("Converted image to RGBA mode.")

        for obj in prediction['predictions']:
            white_paper_width = obj['width']
            white_paper_height = obj['height']
            padding_x = int(white_paper_width * 0.1)
            padding_y = int(white_paper_height * 0.1)
            box_width = white_paper_width - 2 * padding_x
            box_height = white_paper_height - 2 * padding_y
            logging.debug(f"Padded white paper dimensions: width={box_width}, height={box_height}.")

            x1_padded = int(obj['x'] - white_paper_width / 2 + padding_x)
            y1_padded = int(obj['y'] - white_paper_height / 2 + padding_y)
            x2_padded = int(obj['x'] + white_paper_width / 2 - padding_x)
            y2_padded = int(obj['y'] + white_paper_height / 2 - padding_y)

            angle = detect_paper_angle(np.array(image), (x1_padded, y1_padded, x2_padded, y2_padded))
            logging.debug(f"Detected paper angle: {angle} degrees.")

            # (Optional) debug bounding box
            debug_layer = pil_image.copy()
            debug_draw = ImageDraw.Draw(debug_layer)
            debug_draw.rectangle([(x1_padded, y1_padded), (x2_padded, y2_padded)], outline="red", width=3)
            debug_layer.save("/tmp/debug_bounding_box.png")
            logging.debug("Saved bounding box debug image to /tmp/debug_bounding_box.png.")

            # Load pre-generated handwriting image
            handwriting_path = "/path/to/pre-generated/handwriting.png"
            handwriting_img = Image.open(handwriting_path).convert("RGBA")
            handwriting_img = handwriting_img.resize((box_width, box_height), Image.ANTIALIAS)
            rotated_handwriting = handwriting_img.rotate(-angle, resample=Image.BICUBIC, expand=True)

            text_layer = Image.new("RGBA", pil_image.size, (255, 255, 255, 0))
            paste_x = int(obj['x'] - rotated_handwriting.size[0] / 2)
            paste_y = int(obj['y'] - rotated_handwriting.size[1] / 2)
            text_layer.paste(rotated_handwriting, (paste_x, paste_y), rotated_handwriting)
            pil_image = Image.alpha_composite(pil_image, text_layer)
            logging.debug("Handwriting layer composited onto the original image.")

        output_image_path = "/tmp/output_image.png"
        pil_image.convert("RGB").save(output_image_path)
        logging.debug(f"Output image saved to {output_image_path}.")
        return output_image_path

    except Exception as e:
        logging.error(f"Error during image processing: {e}")
        return None

def gradio_inference(image, text):
    logging.debug("Starting Gradio inference.")
    result_path = process_image(image, text)
    if result_path:
        logging.debug("Gradio inference successful.")
        return result_path, result_path, "Processing complete! Download the image below."
    logging.error("Gradio inference failed.")
    return None, None, "An error occurred while processing the image. Please check the logs."

interface = gr.Interface(
    fn=gradio_inference,
    inputs=[
        gr.Image(type="pil", label="Upload an Image"),
        gr.Textbox(label="Enter Text to Overlay")
    ],
    outputs=[
        gr.Image(label="Processed Image Preview"),
        gr.File(label="Download Processed Image"),
        gr.Textbox(label="Status")
    ],
    title="Roboflow Detection with Handwriting Overlay",
    description="Upload an image and enter text to overlay. The Roboflow model detects the white paper area, and a handwriting image is composited accordingly.",
    allow_flagging="never"
)

if __name__ == "__main__":
    interface.launch(
        server_name="0.0.0.0",
        server_port=int(os.environ.get("PORT", 7860)),
        enable_queue=True
    )