Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,13 +1,16 @@
|
|
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
import logging
|
3 |
from roboflow import Roboflow
|
4 |
from PIL import Image, ImageDraw
|
5 |
import cv2
|
6 |
import numpy as np
|
7 |
-
import os
|
8 |
from math import atan2, degrees
|
9 |
import asyncio
|
10 |
-
import
|
11 |
|
12 |
# Configure logging
|
13 |
logging.basicConfig(
|
@@ -25,72 +28,62 @@ PROJECT_NAME = "model_verification_project"
|
|
25 |
VERSION_NUMBER = 2
|
26 |
|
27 |
# ----------------------------
|
28 |
-
#
|
29 |
# ----------------------------
|
30 |
-
def
|
31 |
"""
|
32 |
-
|
33 |
-
|
34 |
"""
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
page = await browser.newPage()
|
53 |
await page.goto('https://www.calligraphr.com/en/font/', {'waitUntil': 'networkidle2'})
|
54 |
await page.waitForSelector('#text-input')
|
55 |
await page.type('#text-input', text_prompt)
|
56 |
-
await asyncio.sleep(3) # Increased wait time for the page to render
|
57 |
|
58 |
-
#
|
|
|
|
|
|
|
59 |
await page.screenshot({
|
60 |
'path': screenshot_path,
|
61 |
'clip': {'x': 100, 'y': 200, 'width': 600, 'height': 150}
|
62 |
})
|
63 |
-
await browser.close()
|
64 |
return screenshot_path
|
65 |
|
66 |
-
# Create a new event loop for this process
|
67 |
-
loop = asyncio.new_event_loop()
|
68 |
-
asyncio.set_event_loop(loop)
|
69 |
-
try:
|
70 |
-
result = loop.run_until_complete(_generate())
|
71 |
-
return_dict['result'] = result
|
72 |
-
except Exception as e:
|
73 |
-
logging.error("Error in handwriting generation process: " + str(e))
|
74 |
-
return_dict['result'] = None
|
75 |
finally:
|
76 |
-
|
77 |
|
78 |
-
def
|
79 |
"""
|
80 |
-
|
81 |
"""
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
process.join()
|
90 |
-
return return_dict.get('result', None)
|
91 |
|
92 |
# ----------------------------
|
93 |
-
#
|
94 |
# ----------------------------
|
95 |
def detect_paper_angle(image, bounding_box):
|
96 |
x1, y1, x2, y2 = bounding_box
|
@@ -133,20 +126,23 @@ def process_image(image, text):
|
|
133 |
prediction = model.predict(input_image_path, confidence=70, overlap=50).json()
|
134 |
logging.debug(f"Inference result: {prediction}")
|
135 |
|
136 |
-
# Convert image for processing
|
137 |
pil_image = image.convert("RGBA")
|
138 |
logging.debug("Converted image to RGBA mode.")
|
139 |
|
140 |
-
#
|
141 |
for obj in prediction['predictions']:
|
|
|
142 |
white_paper_width = obj['width']
|
143 |
white_paper_height = obj['height']
|
|
|
|
|
144 |
padding_x = int(white_paper_width * 0.1)
|
145 |
padding_y = int(white_paper_height * 0.1)
|
146 |
box_width = white_paper_width - 2 * padding_x
|
147 |
box_height = white_paper_height - 2 * padding_y
|
148 |
logging.debug(f"Padded white paper dimensions: width={box_width}, height={box_height}.")
|
149 |
|
|
|
150 |
x1_padded = int(obj['x'] - white_paper_width / 2 + padding_x)
|
151 |
y1_padded = int(obj['y'] - white_paper_height / 2 + padding_y)
|
152 |
x2_padded = int(obj['x'] + white_paper_width / 2 - padding_x)
|
@@ -156,15 +152,15 @@ def process_image(image, text):
|
|
156 |
angle = detect_paper_angle(np.array(image), (x1_padded, y1_padded, x2_padded, y2_padded))
|
157 |
logging.debug(f"Detected paper angle: {angle} degrees.")
|
158 |
|
159 |
-
# (Optional)
|
160 |
debug_layer = pil_image.copy()
|
161 |
debug_draw = ImageDraw.Draw(debug_layer)
|
162 |
debug_draw.rectangle([(x1_padded, y1_padded), (x2_padded, y2_padded)], outline="red", width=3)
|
163 |
debug_layer.save("/tmp/debug_bounding_box.png")
|
164 |
logging.debug("Saved bounding box debug image to /tmp/debug_bounding_box.png.")
|
165 |
|
166 |
-
# Generate handwriting image
|
167 |
-
handwriting_path =
|
168 |
if not handwriting_path:
|
169 |
logging.error("Handwriting image generation failed.")
|
170 |
continue
|
@@ -173,7 +169,7 @@ def process_image(image, text):
|
|
173 |
handwriting_img = handwriting_img.resize((box_width, box_height), Image.ANTIALIAS)
|
174 |
rotated_handwriting = handwriting_img.rotate(-angle, resample=Image.BICUBIC, expand=True)
|
175 |
|
176 |
-
# Composite the handwriting
|
177 |
text_layer = Image.new("RGBA", pil_image.size, (255, 255, 255, 0))
|
178 |
paste_x = int(obj['x'] - rotated_handwriting.size[0] / 2)
|
179 |
paste_y = int(obj['y'] - rotated_handwriting.size[1] / 2)
|
@@ -181,7 +177,7 @@ def process_image(image, text):
|
|
181 |
pil_image = Image.alpha_composite(pil_image, text_layer)
|
182 |
logging.debug("Handwriting layer composited onto the original image.")
|
183 |
|
184 |
-
# Save
|
185 |
output_image_path = "/tmp/output_image.png"
|
186 |
pil_image.convert("RGB").save(output_image_path)
|
187 |
logging.debug(f"Output image saved to {output_image_path}.")
|
@@ -192,7 +188,7 @@ def process_image(image, text):
|
|
192 |
return None
|
193 |
|
194 |
# ----------------------------
|
195 |
-
# Gradio
|
196 |
# ----------------------------
|
197 |
def gradio_inference(image, text):
|
198 |
logging.debug("Starting Gradio inference.")
|
@@ -204,7 +200,7 @@ def gradio_inference(image, text):
|
|
204 |
return None, None, "An error occurred while processing the image. Please check the logs."
|
205 |
|
206 |
# ----------------------------
|
207 |
-
# Gradio interface
|
208 |
# ----------------------------
|
209 |
interface = gr.Interface(
|
210 |
fn=gradio_inference,
|
@@ -219,7 +215,9 @@ interface = gr.Interface(
|
|
219 |
],
|
220 |
title="Roboflow Detection with Handwriting Overlay",
|
221 |
description="Upload an image and enter text to overlay. The Roboflow model detects the white paper area, and a handwriting image is generated via Calligraphr using Pyppeteer. The output image is composited accordingly.",
|
222 |
-
allow_flagging="never"
|
|
|
|
|
223 |
)
|
224 |
|
225 |
if __name__ == "__main__":
|
|
|
1 |
+
import nest_asyncio
|
2 |
+
nest_asyncio.apply()
|
3 |
+
|
4 |
+
import os
|
5 |
import gradio as gr
|
6 |
import logging
|
7 |
from roboflow import Roboflow
|
8 |
from PIL import Image, ImageDraw
|
9 |
import cv2
|
10 |
import numpy as np
|
|
|
11 |
from math import atan2, degrees
|
12 |
import asyncio
|
13 |
+
from pyppeteer import launch
|
14 |
|
15 |
# Configure logging
|
16 |
logging.basicConfig(
|
|
|
28 |
VERSION_NUMBER = 2
|
29 |
|
30 |
# ----------------------------
|
31 |
+
# Asynchronous function to generate handwriting image via Pyppeteer
|
32 |
# ----------------------------
|
33 |
+
async def _generate_handwriting_image(text_prompt, screenshot_path):
|
34 |
"""
|
35 |
+
Launches a headless browser, goes to Calligraphr, types the text,
|
36 |
+
and takes a screenshot of the rendered handwriting.
|
37 |
"""
|
38 |
+
# Launch Chromium with additional flags for containerized environments
|
39 |
+
browser = await launch(
|
40 |
+
headless=True,
|
41 |
+
handleSIGINT=False,
|
42 |
+
handleSIGTERM=False,
|
43 |
+
handleSIGHUP=False,
|
44 |
+
args=[
|
45 |
+
'--no-sandbox',
|
46 |
+
'--disable-setuid-sandbox',
|
47 |
+
'--disable-dev-shm-usage',
|
48 |
+
'--disable-gpu',
|
49 |
+
'--single-process',
|
50 |
+
'--no-zygote',
|
51 |
+
'--window-size=1920,1080'
|
52 |
+
]
|
53 |
+
)
|
54 |
+
try:
|
55 |
page = await browser.newPage()
|
56 |
await page.goto('https://www.calligraphr.com/en/font/', {'waitUntil': 'networkidle2'})
|
57 |
await page.waitForSelector('#text-input')
|
58 |
await page.type('#text-input', text_prompt)
|
|
|
59 |
|
60 |
+
# Give the page time to render the handwriting
|
61 |
+
await asyncio.sleep(3)
|
62 |
+
|
63 |
+
# Screenshot a portion of the page that should contain the handwriting
|
64 |
await page.screenshot({
|
65 |
'path': screenshot_path,
|
66 |
'clip': {'x': 100, 'y': 200, 'width': 600, 'height': 150}
|
67 |
})
|
|
|
68 |
return screenshot_path
|
69 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
70 |
finally:
|
71 |
+
await browser.close()
|
72 |
|
73 |
+
def generate_handwriting_image(text_prompt, screenshot_path="/tmp/handwriting.png"):
|
74 |
"""
|
75 |
+
Synchronous wrapper around the async Pyppeteer call.
|
76 |
"""
|
77 |
+
try:
|
78 |
+
loop = asyncio.get_event_loop()
|
79 |
+
result = loop.run_until_complete(_generate_handwriting_image(text_prompt, screenshot_path))
|
80 |
+
return result
|
81 |
+
except Exception as e:
|
82 |
+
logging.error(f"Error generating handwriting image: {e}")
|
83 |
+
return None
|
|
|
|
|
84 |
|
85 |
# ----------------------------
|
86 |
+
# Detect paper angle within bounding box
|
87 |
# ----------------------------
|
88 |
def detect_paper_angle(image, bounding_box):
|
89 |
x1, y1, x2, y2 = bounding_box
|
|
|
126 |
prediction = model.predict(input_image_path, confidence=70, overlap=50).json()
|
127 |
logging.debug(f"Inference result: {prediction}")
|
128 |
|
|
|
129 |
pil_image = image.convert("RGBA")
|
130 |
logging.debug("Converted image to RGBA mode.")
|
131 |
|
132 |
+
# Iterate over detected objects (assumed white paper)
|
133 |
for obj in prediction['predictions']:
|
134 |
+
# Paper dimensions
|
135 |
white_paper_width = obj['width']
|
136 |
white_paper_height = obj['height']
|
137 |
+
|
138 |
+
# Padding
|
139 |
padding_x = int(white_paper_width * 0.1)
|
140 |
padding_y = int(white_paper_height * 0.1)
|
141 |
box_width = white_paper_width - 2 * padding_x
|
142 |
box_height = white_paper_height - 2 * padding_y
|
143 |
logging.debug(f"Padded white paper dimensions: width={box_width}, height={box_height}.")
|
144 |
|
145 |
+
# Calculate padded coordinates
|
146 |
x1_padded = int(obj['x'] - white_paper_width / 2 + padding_x)
|
147 |
y1_padded = int(obj['y'] - white_paper_height / 2 + padding_y)
|
148 |
x2_padded = int(obj['x'] + white_paper_width / 2 - padding_x)
|
|
|
152 |
angle = detect_paper_angle(np.array(image), (x1_padded, y1_padded, x2_padded, y2_padded))
|
153 |
logging.debug(f"Detected paper angle: {angle} degrees.")
|
154 |
|
155 |
+
# (Optional) debug bounding box
|
156 |
debug_layer = pil_image.copy()
|
157 |
debug_draw = ImageDraw.Draw(debug_layer)
|
158 |
debug_draw.rectangle([(x1_padded, y1_padded), (x2_padded, y2_padded)], outline="red", width=3)
|
159 |
debug_layer.save("/tmp/debug_bounding_box.png")
|
160 |
logging.debug("Saved bounding box debug image to /tmp/debug_bounding_box.png.")
|
161 |
|
162 |
+
# Generate handwriting image
|
163 |
+
handwriting_path = generate_handwriting_image(text, "/tmp/handwriting.png")
|
164 |
if not handwriting_path:
|
165 |
logging.error("Handwriting image generation failed.")
|
166 |
continue
|
|
|
169 |
handwriting_img = handwriting_img.resize((box_width, box_height), Image.ANTIALIAS)
|
170 |
rotated_handwriting = handwriting_img.rotate(-angle, resample=Image.BICUBIC, expand=True)
|
171 |
|
172 |
+
# Composite the handwriting
|
173 |
text_layer = Image.new("RGBA", pil_image.size, (255, 255, 255, 0))
|
174 |
paste_x = int(obj['x'] - rotated_handwriting.size[0] / 2)
|
175 |
paste_y = int(obj['y'] - rotated_handwriting.size[1] / 2)
|
|
|
177 |
pil_image = Image.alpha_composite(pil_image, text_layer)
|
178 |
logging.debug("Handwriting layer composited onto the original image.")
|
179 |
|
180 |
+
# Save output
|
181 |
output_image_path = "/tmp/output_image.png"
|
182 |
pil_image.convert("RGB").save(output_image_path)
|
183 |
logging.debug(f"Output image saved to {output_image_path}.")
|
|
|
188 |
return None
|
189 |
|
190 |
# ----------------------------
|
191 |
+
# Gradio inference function
|
192 |
# ----------------------------
|
193 |
def gradio_inference(image, text):
|
194 |
logging.debug("Starting Gradio inference.")
|
|
|
200 |
return None, None, "An error occurred while processing the image. Please check the logs."
|
201 |
|
202 |
# ----------------------------
|
203 |
+
# Gradio interface
|
204 |
# ----------------------------
|
205 |
interface = gr.Interface(
|
206 |
fn=gradio_inference,
|
|
|
215 |
],
|
216 |
title="Roboflow Detection with Handwriting Overlay",
|
217 |
description="Upload an image and enter text to overlay. The Roboflow model detects the white paper area, and a handwriting image is generated via Calligraphr using Pyppeteer. The output image is composited accordingly.",
|
218 |
+
allow_flagging="never",
|
219 |
+
# Limit concurrency to 1 to reduce potential conflicts with the single event loop
|
220 |
+
concurrency_count=1
|
221 |
)
|
222 |
|
223 |
if __name__ == "__main__":
|