Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,3 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import nest_asyncio
|
2 |
nest_asyncio.apply()
|
3 |
|
@@ -23,16 +34,19 @@ logging.basicConfig(
|
|
23 |
)
|
24 |
|
25 |
# Roboflow and model configuration
|
26 |
-
ROBOFLOW_API_KEY = "KUP9w62eUcD5PrrRMJsV"
|
27 |
PROJECT_NAME = "model_verification_project"
|
28 |
VERSION_NUMBER = 2
|
29 |
|
|
|
|
|
|
|
30 |
async def _generate_handwriting_image(text_prompt, screenshot_path):
|
31 |
try:
|
|
|
32 |
browser = await launch(
|
33 |
headless=True,
|
34 |
-
|
35 |
-
executablePath="/usr/bin/chromium-browser",
|
36 |
args=[
|
37 |
'--no-sandbox',
|
38 |
'--disable-setuid-sandbox',
|
@@ -44,26 +58,42 @@ async def _generate_handwriting_image(text_prompt, screenshot_path):
|
|
44 |
]
|
45 |
)
|
46 |
page = await browser.newPage()
|
|
|
|
|
47 |
await page.goto('https://www.calligraphr.com/en/font/', {
|
48 |
'waitUntil': 'networkidle2',
|
49 |
-
'timeout': 60000
|
50 |
})
|
|
|
|
|
51 |
await page.waitForSelector('#text-input', {'timeout': 30000})
|
|
|
|
|
52 |
await page.type('#text-input', text_prompt)
|
|
|
|
|
53 |
await asyncio.sleep(5)
|
|
|
|
|
54 |
await page.screenshot({
|
55 |
'path': screenshot_path,
|
56 |
'clip': {'x': 100, 'y': 200, 'width': 600, 'height': 150}
|
57 |
})
|
58 |
return screenshot_path
|
|
|
59 |
except Exception as e:
|
60 |
logging.error(f"Pyppeteer error: {str(e)}")
|
61 |
return None
|
|
|
62 |
finally:
|
|
|
63 |
if 'browser' in locals():
|
64 |
await browser.close()
|
65 |
|
66 |
def generate_handwriting_image(text_prompt, screenshot_path="/tmp/handwriting.png"):
|
|
|
|
|
|
|
67 |
try:
|
68 |
loop = asyncio.get_event_loop()
|
69 |
result = loop.run_until_complete(_generate_handwriting_image(text_prompt, screenshot_path))
|
@@ -72,24 +102,9 @@ def generate_handwriting_image(text_prompt, screenshot_path="/tmp/handwriting.pn
|
|
72 |
logging.error(f"Error generating handwriting image: {e}")
|
73 |
return None
|
74 |
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
gray = cv2.cvtColor(roi, cv2.COLOR_RGBA2GRAY)
|
79 |
-
edges = cv2.Canny(gray, 50, 150)
|
80 |
-
lines = cv2.HoughLinesP(edges, 1, np.pi / 180, threshold=100, minLineLength=50, maxLineGap=10)
|
81 |
-
if lines is not None:
|
82 |
-
longest_line = max(
|
83 |
-
lines, key=lambda line: np.linalg.norm((line[0][2] - line[0][0], line[0][3] - line[0][1]))
|
84 |
-
)
|
85 |
-
x1_line, y1_line, x2_line, y2_line = longest_line[0]
|
86 |
-
dx = x2_line - x1_line
|
87 |
-
dy = y2_line - y1_line
|
88 |
-
angle = degrees(atan2(dy, dx))
|
89 |
-
return angle
|
90 |
-
else:
|
91 |
-
return 0
|
92 |
-
|
93 |
def process_image(image, text):
|
94 |
try:
|
95 |
# Initialize Roboflow
|
@@ -113,23 +128,30 @@ def process_image(image, text):
|
|
113 |
pil_image = image.convert("RGBA")
|
114 |
logging.debug("Converted image to RGBA mode.")
|
115 |
|
|
|
116 |
for obj in prediction['predictions']:
|
|
|
117 |
white_paper_width = obj['width']
|
118 |
white_paper_height = obj['height']
|
|
|
|
|
119 |
padding_x = int(white_paper_width * 0.1)
|
120 |
padding_y = int(white_paper_height * 0.1)
|
121 |
box_width = white_paper_width - 2 * padding_x
|
122 |
box_height = white_paper_height - 2 * padding_y
|
123 |
logging.debug(f"Padded white paper dimensions: width={box_width}, height={box_height}.")
|
124 |
|
|
|
125 |
x1_padded = int(obj['x'] - white_paper_width / 2 + padding_x)
|
126 |
y1_padded = int(obj['y'] - white_paper_height / 2 + padding_y)
|
127 |
x2_padded = int(obj['x'] + white_paper_width / 2 - padding_x)
|
128 |
y2_padded = int(obj['y'] + white_paper_height / 2 - padding_y)
|
129 |
|
|
|
130 |
angle = detect_paper_angle(np.array(image), (x1_padded, y1_padded, x2_padded, y2_padded))
|
131 |
logging.debug(f"Detected paper angle: {angle} degrees.")
|
132 |
|
|
|
133 |
debug_layer = pil_image.copy()
|
134 |
debug_draw = ImageDraw.Draw(debug_layer)
|
135 |
debug_draw.rectangle([(x1_padded, y1_padded), (x2_padded, y2_padded)], outline="red", width=3)
|
@@ -146,6 +168,7 @@ def process_image(image, text):
|
|
146 |
handwriting_img = handwriting_img.resize((box_width, box_height), Image.ANTIALIAS)
|
147 |
rotated_handwriting = handwriting_img.rotate(-angle, resample=Image.BICUBIC, expand=True)
|
148 |
|
|
|
149 |
text_layer = Image.new("RGBA", pil_image.size, (255, 255, 255, 0))
|
150 |
paste_x = int(obj['x'] - rotated_handwriting.size[0] / 2)
|
151 |
paste_y = int(obj['y'] - rotated_handwriting.size[1] / 2)
|
@@ -153,6 +176,7 @@ def process_image(image, text):
|
|
153 |
pil_image = Image.alpha_composite(pil_image, text_layer)
|
154 |
logging.debug("Handwriting layer composited onto the original image.")
|
155 |
|
|
|
156 |
output_image_path = "/tmp/output_image.png"
|
157 |
pil_image.convert("RGB").save(output_image_path)
|
158 |
logging.debug(f"Output image saved to {output_image_path}.")
|
@@ -162,15 +186,9 @@ def process_image(image, text):
|
|
162 |
logging.error(f"Error during image processing: {e}")
|
163 |
return None
|
164 |
|
165 |
-
|
166 |
-
|
167 |
-
|
168 |
-
if result_path:
|
169 |
-
logging.debug("Gradio inference successful.")
|
170 |
-
return result_path, result_path, "Processing complete! Download the image below."
|
171 |
-
logging.error("Gradio inference failed.")
|
172 |
-
return None, None, "An error occurred while processing the image. Please check the logs."
|
173 |
-
|
174 |
interface = gr.Interface(
|
175 |
fn=gradio_inference,
|
176 |
inputs=[
|
@@ -192,4 +210,4 @@ if __name__ == "__main__":
|
|
192 |
server_name="0.0.0.0",
|
193 |
server_port=int(os.environ.get("PORT", 7860)),
|
194 |
enable_queue=True
|
195 |
-
)
|
|
|
1 |
+
# Install system dependencies first
|
2 |
+
!apt-get update
|
3 |
+
!apt-get install -y \
|
4 |
+
chromium-browser \
|
5 |
+
chromium-chromedriver \
|
6 |
+
libnss3 \
|
7 |
+
libxss1 \
|
8 |
+
libatk-bridge2.0-0 \
|
9 |
+
libgtk-3-0 \
|
10 |
+
libgbm-dev
|
11 |
+
|
12 |
import nest_asyncio
|
13 |
nest_asyncio.apply()
|
14 |
|
|
|
34 |
)
|
35 |
|
36 |
# Roboflow and model configuration
|
37 |
+
ROBOFLOW_API_KEY = "KUP9w62eUcD5PrrRMJsV" # Replace with your API key if needed
|
38 |
PROJECT_NAME = "model_verification_project"
|
39 |
VERSION_NUMBER = 2
|
40 |
|
41 |
+
# ----------------------------
|
42 |
+
# Asynchronous function to generate handwriting image via Pyppeteer
|
43 |
+
# ----------------------------
|
44 |
async def _generate_handwriting_image(text_prompt, screenshot_path):
|
45 |
try:
|
46 |
+
# Launch Chromium with the correct path
|
47 |
browser = await launch(
|
48 |
headless=True,
|
49 |
+
executablePath="/usr/bin/chromium-browser", # Explicit path to Chromium
|
|
|
50 |
args=[
|
51 |
'--no-sandbox',
|
52 |
'--disable-setuid-sandbox',
|
|
|
58 |
]
|
59 |
)
|
60 |
page = await browser.newPage()
|
61 |
+
|
62 |
+
# Navigate to Calligraphr
|
63 |
await page.goto('https://www.calligraphr.com/en/font/', {
|
64 |
'waitUntil': 'networkidle2',
|
65 |
+
'timeout': 60000 # 60 seconds timeout
|
66 |
})
|
67 |
+
|
68 |
+
# Wait for the text input field
|
69 |
await page.waitForSelector('#text-input', {'timeout': 30000})
|
70 |
+
|
71 |
+
# Type the text prompt
|
72 |
await page.type('#text-input', text_prompt)
|
73 |
+
|
74 |
+
# Wait for rendering
|
75 |
await asyncio.sleep(5)
|
76 |
+
|
77 |
+
# Take a screenshot
|
78 |
await page.screenshot({
|
79 |
'path': screenshot_path,
|
80 |
'clip': {'x': 100, 'y': 200, 'width': 600, 'height': 150}
|
81 |
})
|
82 |
return screenshot_path
|
83 |
+
|
84 |
except Exception as e:
|
85 |
logging.error(f"Pyppeteer error: {str(e)}")
|
86 |
return None
|
87 |
+
|
88 |
finally:
|
89 |
+
# Close the browser
|
90 |
if 'browser' in locals():
|
91 |
await browser.close()
|
92 |
|
93 |
def generate_handwriting_image(text_prompt, screenshot_path="/tmp/handwriting.png"):
|
94 |
+
"""
|
95 |
+
Synchronous wrapper around the async Pyppeteer call.
|
96 |
+
"""
|
97 |
try:
|
98 |
loop = asyncio.get_event_loop()
|
99 |
result = loop.run_until_complete(_generate_handwriting_image(text_prompt, screenshot_path))
|
|
|
102 |
logging.error(f"Error generating handwriting image: {e}")
|
103 |
return None
|
104 |
|
105 |
+
# ----------------------------
|
106 |
+
# Main processing function
|
107 |
+
# ----------------------------
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
108 |
def process_image(image, text):
|
109 |
try:
|
110 |
# Initialize Roboflow
|
|
|
128 |
pil_image = image.convert("RGBA")
|
129 |
logging.debug("Converted image to RGBA mode.")
|
130 |
|
131 |
+
# Iterate over detected objects (assumed white paper)
|
132 |
for obj in prediction['predictions']:
|
133 |
+
# Paper dimensions
|
134 |
white_paper_width = obj['width']
|
135 |
white_paper_height = obj['height']
|
136 |
+
|
137 |
+
# Padding
|
138 |
padding_x = int(white_paper_width * 0.1)
|
139 |
padding_y = int(white_paper_height * 0.1)
|
140 |
box_width = white_paper_width - 2 * padding_x
|
141 |
box_height = white_paper_height - 2 * padding_y
|
142 |
logging.debug(f"Padded white paper dimensions: width={box_width}, height={box_height}.")
|
143 |
|
144 |
+
# Calculate padded coordinates
|
145 |
x1_padded = int(obj['x'] - white_paper_width / 2 + padding_x)
|
146 |
y1_padded = int(obj['y'] - white_paper_height / 2 + padding_y)
|
147 |
x2_padded = int(obj['x'] + white_paper_width / 2 - padding_x)
|
148 |
y2_padded = int(obj['y'] + white_paper_height / 2 - padding_y)
|
149 |
|
150 |
+
# Detect paper angle
|
151 |
angle = detect_paper_angle(np.array(image), (x1_padded, y1_padded, x2_padded, y2_padded))
|
152 |
logging.debug(f"Detected paper angle: {angle} degrees.")
|
153 |
|
154 |
+
# (Optional) debug bounding box
|
155 |
debug_layer = pil_image.copy()
|
156 |
debug_draw = ImageDraw.Draw(debug_layer)
|
157 |
debug_draw.rectangle([(x1_padded, y1_padded), (x2_padded, y2_padded)], outline="red", width=3)
|
|
|
168 |
handwriting_img = handwriting_img.resize((box_width, box_height), Image.ANTIALIAS)
|
169 |
rotated_handwriting = handwriting_img.rotate(-angle, resample=Image.BICUBIC, expand=True)
|
170 |
|
171 |
+
# Composite the handwriting
|
172 |
text_layer = Image.new("RGBA", pil_image.size, (255, 255, 255, 0))
|
173 |
paste_x = int(obj['x'] - rotated_handwriting.size[0] / 2)
|
174 |
paste_y = int(obj['y'] - rotated_handwriting.size[1] / 2)
|
|
|
176 |
pil_image = Image.alpha_composite(pil_image, text_layer)
|
177 |
logging.debug("Handwriting layer composited onto the original image.")
|
178 |
|
179 |
+
# Save output
|
180 |
output_image_path = "/tmp/output_image.png"
|
181 |
pil_image.convert("RGB").save(output_image_path)
|
182 |
logging.debug(f"Output image saved to {output_image_path}.")
|
|
|
186 |
logging.error(f"Error during image processing: {e}")
|
187 |
return None
|
188 |
|
189 |
+
# ----------------------------
|
190 |
+
# Gradio interface
|
191 |
+
# ----------------------------
|
|
|
|
|
|
|
|
|
|
|
|
|
192 |
interface = gr.Interface(
|
193 |
fn=gradio_inference,
|
194 |
inputs=[
|
|
|
210 |
server_name="0.0.0.0",
|
211 |
server_port=int(os.environ.get("PORT", 7860)),
|
212 |
enable_queue=True
|
213 |
+
)
|