Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -7,13 +7,12 @@ import numpy as np
|
|
| 7 |
import os
|
| 8 |
from math import atan2, degrees
|
| 9 |
import asyncio
|
| 10 |
-
from pyppeteer import launch
|
| 11 |
import multiprocessing
|
| 12 |
|
| 13 |
# Configure logging
|
| 14 |
logging.basicConfig(
|
| 15 |
level=logging.DEBUG,
|
| 16 |
-
format=
|
| 17 |
handlers=[
|
| 18 |
logging.FileHandler("debug.log"),
|
| 19 |
logging.StreamHandler()
|
|
@@ -21,30 +20,40 @@ logging.basicConfig(
|
|
| 21 |
)
|
| 22 |
|
| 23 |
# Roboflow and model configuration
|
| 24 |
-
ROBOFLOW_API_KEY = "KUP9w62eUcD5PrrRMJsV" # Replace with your API key
|
| 25 |
PROJECT_NAME = "model_verification_project"
|
| 26 |
VERSION_NUMBER = 2
|
| 27 |
|
| 28 |
# ----------------------------
|
| 29 |
-
#
|
| 30 |
# ----------------------------
|
| 31 |
def generate_handwriting_image_process(text_prompt, screenshot_path, return_dict):
|
| 32 |
"""
|
| 33 |
-
This function runs in a separate process so that
|
| 34 |
-
|
| 35 |
"""
|
| 36 |
import asyncio
|
| 37 |
from pyppeteer import launch
|
| 38 |
|
| 39 |
async def _generate():
|
| 40 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 41 |
page = await browser.newPage()
|
| 42 |
await page.goto('https://www.calligraphr.com/en/font/', {'waitUntil': 'networkidle2'})
|
| 43 |
await page.waitForSelector('#text-input')
|
| 44 |
await page.type('#text-input', text_prompt)
|
| 45 |
await asyncio.sleep(2) # Wait for the handwriting preview to render
|
| 46 |
|
| 47 |
-
# Adjust
|
| 48 |
await page.screenshot({
|
| 49 |
'path': screenshot_path,
|
| 50 |
'clip': {'x': 100, 'y': 200, 'width': 600, 'height': 150}
|
|
@@ -55,13 +64,25 @@ def generate_handwriting_image_process(text_prompt, screenshot_path, return_dict
|
|
| 55 |
# Create a new event loop for this process
|
| 56 |
loop = asyncio.new_event_loop()
|
| 57 |
asyncio.set_event_loop(loop)
|
| 58 |
-
|
| 59 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 60 |
|
| 61 |
def get_handwriting_image(text_prompt, screenshot_path="/tmp/handwriting.png"):
|
|
|
|
|
|
|
|
|
|
| 62 |
manager = multiprocessing.Manager()
|
| 63 |
return_dict = manager.dict()
|
| 64 |
-
process = multiprocessing.Process(
|
|
|
|
|
|
|
|
|
|
| 65 |
process.start()
|
| 66 |
process.join()
|
| 67 |
return return_dict.get('result', None)
|
|
@@ -76,7 +97,9 @@ def detect_paper_angle(image, bounding_box):
|
|
| 76 |
edges = cv2.Canny(gray, 50, 150)
|
| 77 |
lines = cv2.HoughLinesP(edges, 1, np.pi / 180, threshold=100, minLineLength=50, maxLineGap=10)
|
| 78 |
if lines is not None:
|
| 79 |
-
longest_line = max(
|
|
|
|
|
|
|
| 80 |
x1_line, y1_line, x2_line, y2_line = longest_line[0]
|
| 81 |
dx = x2_line - x1_line
|
| 82 |
dy = y2_line - y1_line
|
|
@@ -108,6 +131,7 @@ def process_image(image, text):
|
|
| 108 |
prediction = model.predict(input_image_path, confidence=70, overlap=50).json()
|
| 109 |
logging.debug(f"Inference result: {prediction}")
|
| 110 |
|
|
|
|
| 111 |
pil_image = image.convert("RGBA")
|
| 112 |
logging.debug("Converted image to RGBA mode.")
|
| 113 |
|
|
@@ -126,10 +150,11 @@ def process_image(image, text):
|
|
| 126 |
x2_padded = int(obj['x'] + white_paper_width / 2 - padding_x)
|
| 127 |
y2_padded = int(obj['y'] + white_paper_height / 2 - padding_y)
|
| 128 |
|
|
|
|
| 129 |
angle = detect_paper_angle(np.array(image), (x1_padded, y1_padded, x2_padded, y2_padded))
|
| 130 |
logging.debug(f"Detected paper angle: {angle} degrees.")
|
| 131 |
|
| 132 |
-
#
|
| 133 |
debug_layer = pil_image.copy()
|
| 134 |
debug_draw = ImageDraw.Draw(debug_layer)
|
| 135 |
debug_draw.rectangle([(x1_padded, y1_padded), (x2_padded, y2_padded)], outline="red", width=3)
|
|
@@ -146,6 +171,7 @@ def process_image(image, text):
|
|
| 146 |
handwriting_img = handwriting_img.resize((box_width, box_height), Image.ANTIALIAS)
|
| 147 |
rotated_handwriting = handwriting_img.rotate(-angle, resample=Image.BICUBIC, expand=True)
|
| 148 |
|
|
|
|
| 149 |
text_layer = Image.new("RGBA", pil_image.size, (255, 255, 255, 0))
|
| 150 |
paste_x = int(obj['x'] - rotated_handwriting.size[0] / 2)
|
| 151 |
paste_y = int(obj['y'] - rotated_handwriting.size[1] / 2)
|
|
@@ -153,6 +179,7 @@ def process_image(image, text):
|
|
| 153 |
pil_image = Image.alpha_composite(pil_image, text_layer)
|
| 154 |
logging.debug("Handwriting layer composited onto the original image.")
|
| 155 |
|
|
|
|
| 156 |
output_image_path = "/tmp/output_image.png"
|
| 157 |
pil_image.convert("RGB").save(output_image_path)
|
| 158 |
logging.debug(f"Output image saved to {output_image_path}.")
|
|
|
|
| 7 |
import os
|
| 8 |
from math import atan2, degrees
|
| 9 |
import asyncio
|
|
|
|
| 10 |
import multiprocessing
|
| 11 |
|
| 12 |
# Configure logging
|
| 13 |
logging.basicConfig(
|
| 14 |
level=logging.DEBUG,
|
| 15 |
+
format="%(asctime)s - %(levelname)s - %(message)s",
|
| 16 |
handlers=[
|
| 17 |
logging.FileHandler("debug.log"),
|
| 18 |
logging.StreamHandler()
|
|
|
|
| 20 |
)
|
| 21 |
|
| 22 |
# Roboflow and model configuration
|
| 23 |
+
ROBOFLOW_API_KEY = "KUP9w62eUcD5PrrRMJsV" # Replace with your API key if needed
|
| 24 |
PROJECT_NAME = "model_verification_project"
|
| 25 |
VERSION_NUMBER = 2
|
| 26 |
|
| 27 |
# ----------------------------
|
| 28 |
+
# Function to generate handwriting image using Pyppeteer in a separate process
|
| 29 |
# ----------------------------
|
| 30 |
def generate_handwriting_image_process(text_prompt, screenshot_path, return_dict):
|
| 31 |
"""
|
| 32 |
+
This function runs in a separate process so that Pyppeteer's signal handling
|
| 33 |
+
works correctly in its main thread.
|
| 34 |
"""
|
| 35 |
import asyncio
|
| 36 |
from pyppeteer import launch
|
| 37 |
|
| 38 |
async def _generate():
|
| 39 |
+
# Launch Chromium with additional flags for containerized environments
|
| 40 |
+
browser = await launch(
|
| 41 |
+
headless=True,
|
| 42 |
+
args=[
|
| 43 |
+
'--no-sandbox',
|
| 44 |
+
'--disable-setuid-sandbox',
|
| 45 |
+
'--disable-dev-shm-usage',
|
| 46 |
+
'--disable-gpu',
|
| 47 |
+
'--single-process'
|
| 48 |
+
]
|
| 49 |
+
)
|
| 50 |
page = await browser.newPage()
|
| 51 |
await page.goto('https://www.calligraphr.com/en/font/', {'waitUntil': 'networkidle2'})
|
| 52 |
await page.waitForSelector('#text-input')
|
| 53 |
await page.type('#text-input', text_prompt)
|
| 54 |
await asyncio.sleep(2) # Wait for the handwriting preview to render
|
| 55 |
|
| 56 |
+
# Adjust the clip values as needed to capture the proper area of the page
|
| 57 |
await page.screenshot({
|
| 58 |
'path': screenshot_path,
|
| 59 |
'clip': {'x': 100, 'y': 200, 'width': 600, 'height': 150}
|
|
|
|
| 64 |
# Create a new event loop for this process
|
| 65 |
loop = asyncio.new_event_loop()
|
| 66 |
asyncio.set_event_loop(loop)
|
| 67 |
+
try:
|
| 68 |
+
result = loop.run_until_complete(_generate())
|
| 69 |
+
return_dict['result'] = result
|
| 70 |
+
except Exception as e:
|
| 71 |
+
logging.error("Error in handwriting generation process: " + str(e))
|
| 72 |
+
return_dict['result'] = None
|
| 73 |
+
finally:
|
| 74 |
+
loop.close()
|
| 75 |
|
| 76 |
def get_handwriting_image(text_prompt, screenshot_path="/tmp/handwriting.png"):
|
| 77 |
+
"""
|
| 78 |
+
Starts a separate process to generate a handwriting image and returns the image path.
|
| 79 |
+
"""
|
| 80 |
manager = multiprocessing.Manager()
|
| 81 |
return_dict = manager.dict()
|
| 82 |
+
process = multiprocessing.Process(
|
| 83 |
+
target=generate_handwriting_image_process,
|
| 84 |
+
args=(text_prompt, screenshot_path, return_dict)
|
| 85 |
+
)
|
| 86 |
process.start()
|
| 87 |
process.join()
|
| 88 |
return return_dict.get('result', None)
|
|
|
|
| 97 |
edges = cv2.Canny(gray, 50, 150)
|
| 98 |
lines = cv2.HoughLinesP(edges, 1, np.pi / 180, threshold=100, minLineLength=50, maxLineGap=10)
|
| 99 |
if lines is not None:
|
| 100 |
+
longest_line = max(
|
| 101 |
+
lines, key=lambda line: np.linalg.norm((line[0][2] - line[0][0], line[0][3] - line[0][1]))
|
| 102 |
+
)
|
| 103 |
x1_line, y1_line, x2_line, y2_line = longest_line[0]
|
| 104 |
dx = x2_line - x1_line
|
| 105 |
dy = y2_line - y1_line
|
|
|
|
| 131 |
prediction = model.predict(input_image_path, confidence=70, overlap=50).json()
|
| 132 |
logging.debug(f"Inference result: {prediction}")
|
| 133 |
|
| 134 |
+
# Convert image for processing
|
| 135 |
pil_image = image.convert("RGBA")
|
| 136 |
logging.debug("Converted image to RGBA mode.")
|
| 137 |
|
|
|
|
| 150 |
x2_padded = int(obj['x'] + white_paper_width / 2 - padding_x)
|
| 151 |
y2_padded = int(obj['y'] + white_paper_height / 2 - padding_y)
|
| 152 |
|
| 153 |
+
# Detect paper angle
|
| 154 |
angle = detect_paper_angle(np.array(image), (x1_padded, y1_padded, x2_padded, y2_padded))
|
| 155 |
logging.debug(f"Detected paper angle: {angle} degrees.")
|
| 156 |
|
| 157 |
+
# (Optional) Save a debug image with the bounding box drawn
|
| 158 |
debug_layer = pil_image.copy()
|
| 159 |
debug_draw = ImageDraw.Draw(debug_layer)
|
| 160 |
debug_draw.rectangle([(x1_padded, y1_padded), (x2_padded, y2_padded)], outline="red", width=3)
|
|
|
|
| 171 |
handwriting_img = handwriting_img.resize((box_width, box_height), Image.ANTIALIAS)
|
| 172 |
rotated_handwriting = handwriting_img.rotate(-angle, resample=Image.BICUBIC, expand=True)
|
| 173 |
|
| 174 |
+
# Composite the handwriting onto the original image
|
| 175 |
text_layer = Image.new("RGBA", pil_image.size, (255, 255, 255, 0))
|
| 176 |
paste_x = int(obj['x'] - rotated_handwriting.size[0] / 2)
|
| 177 |
paste_y = int(obj['y'] - rotated_handwriting.size[1] / 2)
|
|
|
|
| 179 |
pil_image = Image.alpha_composite(pil_image, text_layer)
|
| 180 |
logging.debug("Handwriting layer composited onto the original image.")
|
| 181 |
|
| 182 |
+
# Save and return the output image
|
| 183 |
output_image_path = "/tmp/output_image.png"
|
| 184 |
pil_image.convert("RGB").save(output_image_path)
|
| 185 |
logging.debug(f"Output image saved to {output_image_path}.")
|