Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -0,0 +1,218 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import logging
|
3 |
+
from roboflow import Roboflow
|
4 |
+
from PIL import Image, ImageDraw
|
5 |
+
import cv2
|
6 |
+
import numpy as np
|
7 |
+
import os
|
8 |
+
from math import atan2, degrees
|
9 |
+
import asyncio
|
10 |
+
from pyppeteer import launch
|
11 |
+
|
12 |
+
# Configure logging
|
13 |
+
logging.basicConfig(
|
14 |
+
level=logging.DEBUG,
|
15 |
+
format='%(asctime)s - %(levelname)s - %(message)s',
|
16 |
+
handlers=[
|
17 |
+
logging.FileHandler("debug.log"),
|
18 |
+
logging.StreamHandler()
|
19 |
+
]
|
20 |
+
)
|
21 |
+
|
22 |
+
# Roboflow and model configuration
|
23 |
+
ROBOFLOW_API_KEY = "KUP9w62eUcD5PrrRMJsV" # Replace with your API key
|
24 |
+
PROJECT_NAME = "model_verification_project"
|
25 |
+
VERSION_NUMBER = 2
|
26 |
+
# FONT_PATH is no longer used since we generate handwriting via Calligraphr
|
27 |
+
# FONT_PATH = "./STEVEHANDWRITING-REGULAR.TTF"
|
28 |
+
|
29 |
+
# ----------------------------
|
30 |
+
# Pyppeteer: Generate handwriting image via Calligraphr
|
31 |
+
# ----------------------------
|
32 |
+
async def generate_handwriting_text_image(text_prompt, screenshot_path):
|
33 |
+
browser = await launch(headless=True, args=['--no-sandbox', '--disable-setuid-sandbox'])
|
34 |
+
page = await browser.newPage()
|
35 |
+
|
36 |
+
# Navigate to Calligraphr (adjust URL if needed)
|
37 |
+
await page.goto('https://www.calligraphr.com/en/font/', {'waitUntil': 'networkidle2'})
|
38 |
+
|
39 |
+
# Wait for the text input to be available and type the text
|
40 |
+
await page.waitForSelector('#text-input')
|
41 |
+
await page.type('#text-input', text_prompt)
|
42 |
+
|
43 |
+
# Wait for the page to render the handwriting preview
|
44 |
+
await asyncio.sleep(2)
|
45 |
+
|
46 |
+
# Take a screenshot of the area containing the rendered handwriting text.
|
47 |
+
# (Adjust the clip values if needed to capture the correct area.)
|
48 |
+
await page.screenshot({
|
49 |
+
'path': screenshot_path,
|
50 |
+
'clip': {'x': 100, 'y': 200, 'width': 600, 'height': 150}
|
51 |
+
})
|
52 |
+
|
53 |
+
await browser.close()
|
54 |
+
logging.debug(f"Calligraphr screenshot saved at {screenshot_path}")
|
55 |
+
return screenshot_path
|
56 |
+
|
57 |
+
# ----------------------------
|
58 |
+
# Helper: Detect paper angle within bounding box
|
59 |
+
# ----------------------------
|
60 |
+
def detect_paper_angle(image, bounding_box):
|
61 |
+
x1, y1, x2, y2 = bounding_box
|
62 |
+
|
63 |
+
# Crop the region of interest (ROI) based on the bounding box
|
64 |
+
roi = np.array(image)[y1:y2, x1:x2]
|
65 |
+
|
66 |
+
# Convert ROI to grayscale
|
67 |
+
gray = cv2.cvtColor(roi, cv2.COLOR_RGBA2GRAY)
|
68 |
+
|
69 |
+
# Apply edge detection
|
70 |
+
edges = cv2.Canny(gray, 50, 150)
|
71 |
+
|
72 |
+
# Detect lines using Hough Line Transformation
|
73 |
+
lines = cv2.HoughLinesP(edges, 1, np.pi / 180, threshold=100, minLineLength=50, maxLineGap=10)
|
74 |
+
|
75 |
+
if lines is not None:
|
76 |
+
# Find the longest line (most prominent edge)
|
77 |
+
longest_line = max(lines, key=lambda line: np.linalg.norm((line[0][2] - line[0][0], line[0][3] - line[0][1])))
|
78 |
+
x1_line, y1_line, x2_line, y2_line = longest_line[0]
|
79 |
+
|
80 |
+
# Calculate the angle of the line relative to the horizontal axis
|
81 |
+
dx = x2_line - x1_line
|
82 |
+
dy = y2_line - y1_line
|
83 |
+
angle = degrees(atan2(dy, dx))
|
84 |
+
return angle # Angle of the paper
|
85 |
+
else:
|
86 |
+
return 0 # Default to no rotation if no lines are found
|
87 |
+
|
88 |
+
# ----------------------------
|
89 |
+
# Main processing function
|
90 |
+
# ----------------------------
|
91 |
+
def process_image(image, text):
|
92 |
+
try:
|
93 |
+
# Initialize Roboflow
|
94 |
+
rf = Roboflow(api_key=ROBOFLOW_API_KEY)
|
95 |
+
logging.debug("Initialized Roboflow API.")
|
96 |
+
project = rf.workspace().project(PROJECT_NAME)
|
97 |
+
logging.debug("Accessed project in Roboflow.")
|
98 |
+
model = project.version(VERSION_NUMBER).model
|
99 |
+
logging.debug("Loaded model from Roboflow.")
|
100 |
+
|
101 |
+
# Save input image temporarily
|
102 |
+
input_image_path = "/tmp/input_image.jpg"
|
103 |
+
image.save(input_image_path)
|
104 |
+
logging.debug(f"Input image saved to {input_image_path}.")
|
105 |
+
|
106 |
+
# Perform inference
|
107 |
+
logging.debug("Performing inference on the image...")
|
108 |
+
prediction = model.predict(input_image_path, confidence=70, overlap=50).json()
|
109 |
+
logging.debug(f"Inference result: {prediction}")
|
110 |
+
|
111 |
+
# Open the image for processing
|
112 |
+
pil_image = image.convert("RGBA")
|
113 |
+
logging.debug("Converted image to RGBA mode.")
|
114 |
+
|
115 |
+
# Iterate over detected objects (assumed white papers)
|
116 |
+
for obj in prediction['predictions']:
|
117 |
+
# Use white paper dimensions from the prediction
|
118 |
+
white_paper_width = obj['width']
|
119 |
+
white_paper_height = obj['height']
|
120 |
+
|
121 |
+
# Set padding (adjust percentages as needed)
|
122 |
+
padding_x = int(white_paper_width * 0.1)
|
123 |
+
padding_y = int(white_paper_height * 0.1)
|
124 |
+
|
125 |
+
box_width = white_paper_width - 2 * padding_x
|
126 |
+
box_height = white_paper_height - 2 * padding_y
|
127 |
+
logging.debug(f"Padded white paper dimensions: width={box_width}, height={box_height}.")
|
128 |
+
|
129 |
+
# Calculate padded coordinates
|
130 |
+
x1_padded = int(obj['x'] - white_paper_width / 2 + padding_x)
|
131 |
+
y1_padded = int(obj['y'] - white_paper_height / 2 + padding_y)
|
132 |
+
x2_padded = int(obj['x'] + white_paper_width / 2 - padding_x)
|
133 |
+
y2_padded = int(obj['y'] + white_paper_height / 2 - padding_y)
|
134 |
+
|
135 |
+
# Detect paper angle
|
136 |
+
angle = detect_paper_angle(np.array(image), (x1_padded, y1_padded, x2_padded, y2_padded))
|
137 |
+
logging.debug(f"Detected paper angle: {angle} degrees.")
|
138 |
+
|
139 |
+
# For debugging: draw the bounding box (optional)
|
140 |
+
debug_layer = pil_image.copy()
|
141 |
+
debug_draw = ImageDraw.Draw(debug_layer)
|
142 |
+
debug_draw.rectangle([(x1_padded, y1_padded), (x2_padded, y2_padded)], outline="red", width=3)
|
143 |
+
debug_layer.save("/tmp/debug_bounding_box.png")
|
144 |
+
logging.debug("Saved bounding box debug image to /tmp/debug_bounding_box.png.")
|
145 |
+
|
146 |
+
# --------------------------------------------
|
147 |
+
# New: Generate handwriting image via Calligraphr
|
148 |
+
# --------------------------------------------
|
149 |
+
handwriting_path = "/tmp/handwriting.png"
|
150 |
+
try:
|
151 |
+
# Run the async Pyppeteer function to generate handwriting
|
152 |
+
handwriting_path = asyncio.run(generate_handwriting_text_image(text, handwriting_path))
|
153 |
+
except Exception as e:
|
154 |
+
logging.error(f"Error generating handwriting image: {e}")
|
155 |
+
continue # Optionally, you could fall back to another method here
|
156 |
+
|
157 |
+
# Open the generated handwriting image
|
158 |
+
handwriting_img = Image.open(handwriting_path).convert("RGBA")
|
159 |
+
# Resize handwriting image to fit the white paper box
|
160 |
+
handwriting_img = handwriting_img.resize((box_width, box_height), Image.ANTIALIAS)
|
161 |
+
|
162 |
+
# Rotate the handwriting image to align with the detected paper angle
|
163 |
+
rotated_handwriting = handwriting_img.rotate(-angle, resample=Image.BICUBIC, expand=True)
|
164 |
+
|
165 |
+
# Composite the rotated handwriting image onto a transparent layer,
|
166 |
+
# then overlay it on the original image
|
167 |
+
text_layer = Image.new("RGBA", pil_image.size, (255, 255, 255, 0))
|
168 |
+
paste_x = int(obj['x'] - rotated_handwriting.size[0] / 2)
|
169 |
+
paste_y = int(obj['y'] - rotated_handwriting.size[1] / 2)
|
170 |
+
text_layer.paste(rotated_handwriting, (paste_x, paste_y), rotated_handwriting)
|
171 |
+
pil_image = Image.alpha_composite(pil_image, text_layer)
|
172 |
+
logging.debug("Handwriting layer composited onto the original image.")
|
173 |
+
|
174 |
+
# Save and return output image path
|
175 |
+
output_image_path = "/tmp/output_image.png"
|
176 |
+
pil_image.convert("RGB").save(output_image_path)
|
177 |
+
logging.debug(f"Output image saved to {output_image_path}.")
|
178 |
+
return output_image_path
|
179 |
+
|
180 |
+
except Exception as e:
|
181 |
+
logging.error(f"Error during image processing: {e}")
|
182 |
+
return None
|
183 |
+
|
184 |
+
# ----------------------------
|
185 |
+
# Gradio interface function
|
186 |
+
# ----------------------------
|
187 |
+
def gradio_inference(image, text):
|
188 |
+
logging.debug("Starting Gradio inference.")
|
189 |
+
result_path = process_image(image, text)
|
190 |
+
if result_path:
|
191 |
+
logging.debug("Gradio inference successful.")
|
192 |
+
return result_path, result_path, "Processing complete! Download the image below."
|
193 |
+
logging.error("Gradio inference failed.")
|
194 |
+
return None, None, "An error occurred while processing the image. Please check the logs."
|
195 |
+
|
196 |
+
# ----------------------------
|
197 |
+
# Gradio interface definition
|
198 |
+
# ----------------------------
|
199 |
+
interface = gr.Interface(
|
200 |
+
fn=gradio_inference,
|
201 |
+
inputs=[
|
202 |
+
gr.Image(type="pil", label="Upload an Image"),
|
203 |
+
gr.Textbox(label="Enter Text to Overlay")
|
204 |
+
],
|
205 |
+
outputs=[
|
206 |
+
gr.Image(label="Processed Image Preview"), # Preview processed image
|
207 |
+
gr.File(label="Download Processed Image"), # Download the image
|
208 |
+
gr.Textbox(label="Status") # Status message
|
209 |
+
],
|
210 |
+
title="Roboflow Detection with Handwriting Overlay",
|
211 |
+
description="Upload an image, enter text to overlay. The Roboflow model detects the white paper area, and a handwriting image is generated via Calligraphr using Pyppeteer. The output image is composited accordingly.",
|
212 |
+
allow_flagging="never"
|
213 |
+
)
|
214 |
+
|
215 |
+
# Launch the Gradio app
|
216 |
+
if __name__ == "__main__":
|
217 |
+
logging.debug("Launching Gradio interface.")
|
218 |
+
interface.launch(share=True)
|