kreemyyyy commited on
Commit
ed5c13a
·
verified ·
1 Parent(s): b885f3d

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +218 -0
app.py CHANGED
@@ -0,0 +1,218 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ import logging
3
+ from roboflow import Roboflow
4
+ from PIL import Image, ImageDraw
5
+ import cv2
6
+ import numpy as np
7
+ import os
8
+ from math import atan2, degrees
9
+ import asyncio
10
+ from pyppeteer import launch
11
+
12
+ # Configure logging
13
+ logging.basicConfig(
14
+ level=logging.DEBUG,
15
+ format='%(asctime)s - %(levelname)s - %(message)s',
16
+ handlers=[
17
+ logging.FileHandler("debug.log"),
18
+ logging.StreamHandler()
19
+ ]
20
+ )
21
+
22
+ # Roboflow and model configuration
23
+ ROBOFLOW_API_KEY = "KUP9w62eUcD5PrrRMJsV" # Replace with your API key
24
+ PROJECT_NAME = "model_verification_project"
25
+ VERSION_NUMBER = 2
26
+ # FONT_PATH is no longer used since we generate handwriting via Calligraphr
27
+ # FONT_PATH = "./STEVEHANDWRITING-REGULAR.TTF"
28
+
29
+ # ----------------------------
30
+ # Pyppeteer: Generate handwriting image via Calligraphr
31
+ # ----------------------------
32
+ async def generate_handwriting_text_image(text_prompt, screenshot_path):
33
+ browser = await launch(headless=True, args=['--no-sandbox', '--disable-setuid-sandbox'])
34
+ page = await browser.newPage()
35
+
36
+ # Navigate to Calligraphr (adjust URL if needed)
37
+ await page.goto('https://www.calligraphr.com/en/font/', {'waitUntil': 'networkidle2'})
38
+
39
+ # Wait for the text input to be available and type the text
40
+ await page.waitForSelector('#text-input')
41
+ await page.type('#text-input', text_prompt)
42
+
43
+ # Wait for the page to render the handwriting preview
44
+ await asyncio.sleep(2)
45
+
46
+ # Take a screenshot of the area containing the rendered handwriting text.
47
+ # (Adjust the clip values if needed to capture the correct area.)
48
+ await page.screenshot({
49
+ 'path': screenshot_path,
50
+ 'clip': {'x': 100, 'y': 200, 'width': 600, 'height': 150}
51
+ })
52
+
53
+ await browser.close()
54
+ logging.debug(f"Calligraphr screenshot saved at {screenshot_path}")
55
+ return screenshot_path
56
+
57
+ # ----------------------------
58
+ # Helper: Detect paper angle within bounding box
59
+ # ----------------------------
60
+ def detect_paper_angle(image, bounding_box):
61
+ x1, y1, x2, y2 = bounding_box
62
+
63
+ # Crop the region of interest (ROI) based on the bounding box
64
+ roi = np.array(image)[y1:y2, x1:x2]
65
+
66
+ # Convert ROI to grayscale
67
+ gray = cv2.cvtColor(roi, cv2.COLOR_RGBA2GRAY)
68
+
69
+ # Apply edge detection
70
+ edges = cv2.Canny(gray, 50, 150)
71
+
72
+ # Detect lines using Hough Line Transformation
73
+ lines = cv2.HoughLinesP(edges, 1, np.pi / 180, threshold=100, minLineLength=50, maxLineGap=10)
74
+
75
+ if lines is not None:
76
+ # Find the longest line (most prominent edge)
77
+ longest_line = max(lines, key=lambda line: np.linalg.norm((line[0][2] - line[0][0], line[0][3] - line[0][1])))
78
+ x1_line, y1_line, x2_line, y2_line = longest_line[0]
79
+
80
+ # Calculate the angle of the line relative to the horizontal axis
81
+ dx = x2_line - x1_line
82
+ dy = y2_line - y1_line
83
+ angle = degrees(atan2(dy, dx))
84
+ return angle # Angle of the paper
85
+ else:
86
+ return 0 # Default to no rotation if no lines are found
87
+
88
+ # ----------------------------
89
+ # Main processing function
90
+ # ----------------------------
91
+ def process_image(image, text):
92
+ try:
93
+ # Initialize Roboflow
94
+ rf = Roboflow(api_key=ROBOFLOW_API_KEY)
95
+ logging.debug("Initialized Roboflow API.")
96
+ project = rf.workspace().project(PROJECT_NAME)
97
+ logging.debug("Accessed project in Roboflow.")
98
+ model = project.version(VERSION_NUMBER).model
99
+ logging.debug("Loaded model from Roboflow.")
100
+
101
+ # Save input image temporarily
102
+ input_image_path = "/tmp/input_image.jpg"
103
+ image.save(input_image_path)
104
+ logging.debug(f"Input image saved to {input_image_path}.")
105
+
106
+ # Perform inference
107
+ logging.debug("Performing inference on the image...")
108
+ prediction = model.predict(input_image_path, confidence=70, overlap=50).json()
109
+ logging.debug(f"Inference result: {prediction}")
110
+
111
+ # Open the image for processing
112
+ pil_image = image.convert("RGBA")
113
+ logging.debug("Converted image to RGBA mode.")
114
+
115
+ # Iterate over detected objects (assumed white papers)
116
+ for obj in prediction['predictions']:
117
+ # Use white paper dimensions from the prediction
118
+ white_paper_width = obj['width']
119
+ white_paper_height = obj['height']
120
+
121
+ # Set padding (adjust percentages as needed)
122
+ padding_x = int(white_paper_width * 0.1)
123
+ padding_y = int(white_paper_height * 0.1)
124
+
125
+ box_width = white_paper_width - 2 * padding_x
126
+ box_height = white_paper_height - 2 * padding_y
127
+ logging.debug(f"Padded white paper dimensions: width={box_width}, height={box_height}.")
128
+
129
+ # Calculate padded coordinates
130
+ x1_padded = int(obj['x'] - white_paper_width / 2 + padding_x)
131
+ y1_padded = int(obj['y'] - white_paper_height / 2 + padding_y)
132
+ x2_padded = int(obj['x'] + white_paper_width / 2 - padding_x)
133
+ y2_padded = int(obj['y'] + white_paper_height / 2 - padding_y)
134
+
135
+ # Detect paper angle
136
+ angle = detect_paper_angle(np.array(image), (x1_padded, y1_padded, x2_padded, y2_padded))
137
+ logging.debug(f"Detected paper angle: {angle} degrees.")
138
+
139
+ # For debugging: draw the bounding box (optional)
140
+ debug_layer = pil_image.copy()
141
+ debug_draw = ImageDraw.Draw(debug_layer)
142
+ debug_draw.rectangle([(x1_padded, y1_padded), (x2_padded, y2_padded)], outline="red", width=3)
143
+ debug_layer.save("/tmp/debug_bounding_box.png")
144
+ logging.debug("Saved bounding box debug image to /tmp/debug_bounding_box.png.")
145
+
146
+ # --------------------------------------------
147
+ # New: Generate handwriting image via Calligraphr
148
+ # --------------------------------------------
149
+ handwriting_path = "/tmp/handwriting.png"
150
+ try:
151
+ # Run the async Pyppeteer function to generate handwriting
152
+ handwriting_path = asyncio.run(generate_handwriting_text_image(text, handwriting_path))
153
+ except Exception as e:
154
+ logging.error(f"Error generating handwriting image: {e}")
155
+ continue # Optionally, you could fall back to another method here
156
+
157
+ # Open the generated handwriting image
158
+ handwriting_img = Image.open(handwriting_path).convert("RGBA")
159
+ # Resize handwriting image to fit the white paper box
160
+ handwriting_img = handwriting_img.resize((box_width, box_height), Image.ANTIALIAS)
161
+
162
+ # Rotate the handwriting image to align with the detected paper angle
163
+ rotated_handwriting = handwriting_img.rotate(-angle, resample=Image.BICUBIC, expand=True)
164
+
165
+ # Composite the rotated handwriting image onto a transparent layer,
166
+ # then overlay it on the original image
167
+ text_layer = Image.new("RGBA", pil_image.size, (255, 255, 255, 0))
168
+ paste_x = int(obj['x'] - rotated_handwriting.size[0] / 2)
169
+ paste_y = int(obj['y'] - rotated_handwriting.size[1] / 2)
170
+ text_layer.paste(rotated_handwriting, (paste_x, paste_y), rotated_handwriting)
171
+ pil_image = Image.alpha_composite(pil_image, text_layer)
172
+ logging.debug("Handwriting layer composited onto the original image.")
173
+
174
+ # Save and return output image path
175
+ output_image_path = "/tmp/output_image.png"
176
+ pil_image.convert("RGB").save(output_image_path)
177
+ logging.debug(f"Output image saved to {output_image_path}.")
178
+ return output_image_path
179
+
180
+ except Exception as e:
181
+ logging.error(f"Error during image processing: {e}")
182
+ return None
183
+
184
+ # ----------------------------
185
+ # Gradio interface function
186
+ # ----------------------------
187
+ def gradio_inference(image, text):
188
+ logging.debug("Starting Gradio inference.")
189
+ result_path = process_image(image, text)
190
+ if result_path:
191
+ logging.debug("Gradio inference successful.")
192
+ return result_path, result_path, "Processing complete! Download the image below."
193
+ logging.error("Gradio inference failed.")
194
+ return None, None, "An error occurred while processing the image. Please check the logs."
195
+
196
+ # ----------------------------
197
+ # Gradio interface definition
198
+ # ----------------------------
199
+ interface = gr.Interface(
200
+ fn=gradio_inference,
201
+ inputs=[
202
+ gr.Image(type="pil", label="Upload an Image"),
203
+ gr.Textbox(label="Enter Text to Overlay")
204
+ ],
205
+ outputs=[
206
+ gr.Image(label="Processed Image Preview"), # Preview processed image
207
+ gr.File(label="Download Processed Image"), # Download the image
208
+ gr.Textbox(label="Status") # Status message
209
+ ],
210
+ title="Roboflow Detection with Handwriting Overlay",
211
+ description="Upload an image, enter text to overlay. The Roboflow model detects the white paper area, and a handwriting image is generated via Calligraphr using Pyppeteer. The output image is composited accordingly.",
212
+ allow_flagging="never"
213
+ )
214
+
215
+ # Launch the Gradio app
216
+ if __name__ == "__main__":
217
+ logging.debug("Launching Gradio interface.")
218
+ interface.launch(share=True)