File size: 7,945 Bytes
dc428aa
 
 
 
ed5c13a
 
 
 
 
 
 
 
dc428aa
ed5c13a
 
 
 
1ef76af
ed5c13a
 
 
 
 
 
 
173f267
ed5c13a
 
 
dc428aa
 
680dc0a
 
173f267
680dc0a
 
 
 
 
 
 
 
 
 
a77b32c
938fc35
 
680dc0a
 
173f267
680dc0a
938fc35
 
680dc0a
938fc35
 
a77b32c
938fc35
 
680dc0a
938fc35
 
a77b32c
 
 
 
 
938fc35
680dc0a
 
 
938fc35
1ef76af
680dc0a
 
a77b32c
dc428aa
 
 
 
 
 
 
 
ed5c13a
173f267
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ed5c13a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
938fc35
ed5c13a
 
 
 
 
 
dc428aa
a77b32c
 
 
 
ed5c13a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
173f267
 
 
 
 
 
 
 
 
ed5c13a
 
 
 
 
 
 
a77b32c
 
 
ed5c13a
 
a77b32c
84bd09f
ed5c13a
 
 
680dc0a
 
 
173f267
680dc0a
173f267
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
import nest_asyncio
nest_asyncio.apply()

import os
import gradio as gr
import logging
from roboflow import Roboflow
from PIL import Image, ImageDraw
import cv2
import numpy as np
from math import atan2, degrees
import asyncio
from pyppeteer import launch

# Configure logging
logging.basicConfig(
    level=logging.DEBUG,
    format="%(asctime)s - %(levelname)s - %(message)s",
    handlers=[
        logging.FileHandler("debug.log"),
        logging.StreamHandler()
    ]
)

# Roboflow and model configuration
ROBOFLOW_API_KEY = "KUP9w62eUcD5PrrRMJsV"
PROJECT_NAME = "model_verification_project"
VERSION_NUMBER = 2

async def _generate_handwriting_image(text_prompt, screenshot_path):
    try:
        browser = await launch(
            headless=True,
            executablePath="/usr/bin/chromium-browser",  # Path to Chromium
            args=[
                '--no-sandbox',
                '--disable-setuid-sandbox',
                '--disable-dev-shm-usage',
                '--disable-gpu',
                '--single-process',
                '--no-zygote',
                '--window-size=1920,1080'
            ]
        )
        page = await browser.newPage()
        
        # Navigate to Calligraphr
        await page.goto('https://www.calligraphr.com/en/font/', {
            'waitUntil': 'networkidle2',
            'timeout': 60000
        })
        
        # Wait for the text input field
        await page.waitForSelector('#text-input', {'timeout': 30000})
        
        # Type the text prompt
        await page.type('#text-input', text_prompt)
        
        # Wait for rendering
        await asyncio.sleep(5)
        
        # Take a screenshot
        await page.screenshot({
            'path': screenshot_path,
            'clip': {'x': 100, 'y': 200, 'width': 600, 'height': 150}
        })
        return screenshot_path

    except Exception as e:
        logging.error(f"Pyppeteer error: {str(e)}")
        return None

    finally:
        if 'browser' in locals():
            await browser.close()

def generate_handwriting_image(text_prompt, screenshot_path="/tmp/handwriting.png"):
    try:
        loop = asyncio.get_event_loop()
        result = loop.run_until_complete(_generate_handwriting_image(text_prompt, screenshot_path))
        return result
    except Exception as e:
        logging.error(f"Error generating handwriting image: {e}")
        return None

def detect_paper_angle(image, bounding_box):
    x1, y1, x2, y2 = bounding_box
    roi = np.array(image)[y1:y2, x1:x2]
    gray = cv2.cvtColor(roi, cv2.COLOR_RGBA2GRAY)
    edges = cv2.Canny(gray, 50, 150)
    lines = cv2.HoughLinesP(edges, 1, np.pi / 180, threshold=100, minLineLength=50, maxLineGap=10)
    if lines is not None:
        longest_line = max(
            lines, key=lambda line: np.linalg.norm((line[0][2] - line[0][0], line[0][3] - line[0][1]))
        )
        x1_line, y1_line, x2_line, y2_line = longest_line[0]
        dx = x2_line - x1_line
        dy = y2_line - y1_line
        angle = degrees(atan2(dy, dx))
        return angle
    else:
        return 0

def process_image(image, text):
    try:
        # Initialize Roboflow
        rf = Roboflow(api_key=ROBOFLOW_API_KEY)
        logging.debug("Initialized Roboflow API.")
        project = rf.workspace().project(PROJECT_NAME)
        logging.debug("Accessed project in Roboflow.")
        model = project.version(VERSION_NUMBER).model
        logging.debug("Loaded model from Roboflow.")

        # Save input image temporarily
        input_image_path = "/tmp/input_image.jpg"
        image.save(input_image_path)
        logging.debug(f"Input image saved to {input_image_path}.")

        # Perform inference
        logging.debug("Performing inference on the image...")
        prediction = model.predict(input_image_path, confidence=70, overlap=50).json()
        logging.debug(f"Inference result: {prediction}")

        pil_image = image.convert("RGBA")
        logging.debug("Converted image to RGBA mode.")

        for obj in prediction['predictions']:
            white_paper_width = obj['width']
            white_paper_height = obj['height']
            padding_x = int(white_paper_width * 0.1)
            padding_y = int(white_paper_height * 0.1)
            box_width = white_paper_width - 2 * padding_x
            box_height = white_paper_height - 2 * padding_y
            logging.debug(f"Padded white paper dimensions: width={box_width}, height={box_height}.")

            x1_padded = int(obj['x'] - white_paper_width / 2 + padding_x)
            y1_padded = int(obj['y'] - white_paper_height / 2 + padding_y)
            x2_padded = int(obj['x'] + white_paper_width / 2 - padding_x)
            y2_padded = int(obj['y'] + white_paper_height / 2 - padding_y)

            angle = detect_paper_angle(np.array(image), (x1_padded, y1_padded, x2_padded, y2_padded))
            logging.debug(f"Detected paper angle: {angle} degrees.")

            # (Optional) debug bounding box
            debug_layer = pil_image.copy()
            debug_draw = ImageDraw.Draw(debug_layer)
            debug_draw.rectangle([(x1_padded, y1_padded), (x2_padded, y2_padded)], outline="red", width=3)
            debug_layer.save("/tmp/debug_bounding_box.png")
            logging.debug("Saved bounding box debug image to /tmp/debug_bounding_box.png.")

            handwriting_path = generate_handwriting_image(text, "/tmp/handwriting.png")
            if not handwriting_path:
                logging.error("Handwriting image generation failed.")
                continue

            handwriting_img = Image.open(handwriting_path).convert("RGBA")
            handwriting_img = handwriting_img.resize((box_width, box_height), Image.ANTIALIAS)
            rotated_handwriting = handwriting_img.rotate(-angle, resample=Image.BICUBIC, expand=True)

            text_layer = Image.new("RGBA", pil_image.size, (255, 255, 255, 0))
            paste_x = int(obj['x'] - rotated_handwriting.size[0] / 2)
            paste_y = int(obj['y'] - rotated_handwriting.size[1] / 2)
            text_layer.paste(rotated_handwriting, (paste_x, paste_y), rotated_handwriting)
            pil_image = Image.alpha_composite(pil_image, text_layer)
            logging.debug("Handwriting layer composited onto the original image.")

        output_image_path = "/tmp/output_image.png"
        pil_image.convert("RGB").save(output_image_path)
        logging.debug(f"Output image saved to {output_image_path}.")
        return output_image_path

    except Exception as e:
        logging.error(f"Error during image processing: {e}")
        return None

def gradio_inference(image, text):
    logging.debug("Starting Gradio inference.")
    result_path = process_image(image, text)
    if result_path:
        logging.debug("Gradio inference successful.")
        return result_path, result_path, "Processing complete! Download the image below."
    logging.error("Gradio inference failed.")
    return None, None, "An error occurred while processing the image. Please check the logs."

interface = gr.Interface(
    fn=gradio_inference,
    inputs=[
        gr.Image(type="pil", label="Upload an Image"),
        gr.Textbox(label="Enter Text to Overlay")
    ],
    outputs=[
        gr.Image(label="Processed Image Preview"),
        gr.File(label="Download Processed Image"),
        gr.Textbox(label="Status")
    ],
    title="Roboflow Detection with Handwriting Overlay",
    description="Upload an image and enter text to overlay. The Roboflow model detects the white paper area, and a handwriting image is generated via Calligraphr using Pyppeteer. The output image is composited accordingly.",
    allow_flagging="never"
)

if __name__ == "__main__":
    interface.launch(
        server_name="0.0.0.0",
        server_port=int(os.environ.get("PORT", 7860)),
        # Remove enable_queue if your Gradio version doesn't support it
        enable_queue=True
    )