Spaces:
Sleeping
Sleeping
File size: 7,462 Bytes
069af97 6097f87 90dff8a 87303e5 90dff8a f5e8a49 90dff8a 192d4c3 9846923 f0f6ac7 691b922 bdb3f22 f9b1ae8 90dff8a d1b6fc5 33428af 90dff8a d88c7e7 f0f6ac7 d1b6fc5 d88c7e7 d1b6fc5 f0f6ac7 d1b6fc5 f0f6ac7 d1b6fc5 c0f5c8c d1b6fc5 c0f5c8c f0f6ac7 33428af 9846923 33428af 1115063 33428af 90dff8a 65a9702 bafb131 90dff8a 6bcace2 65a9702 bafb131 90dff8a bafb131 c31ee40 90dff8a f5e8a49 01cbe49 23ff2b1 79e5fc0 d1b6fc5 79e5fc0 9fc3eba 58267aa d1b6fc5 6097f87 e02e742 7963d98 cf4ffba 918bcce 54b9714 cf4ffba a82f04a c751763 c25bcaf cf4ffba 72a3e3b cf4ffba d2b6670 79e5fc0 d1b6fc5 79e5fc0 d1b6fc5 d4f2cec d1b6fc5 c751763 d4f2cec d1b6fc5 d4f2cec d2b6670 36c8dbf c751763 d4f2cec d1b6fc5 c751763 d1b6fc5 7963d98 d1b6fc5 c751763 d594b35 7963d98 d1b6fc5 c751763 7963d98 d1b6fc5 7963d98 da8565f b5ce577 da8565f c31ee40 da8565f 01cbe49 c31ee40 90dff8a 9846923 a4f5085 9846923 01cbe49 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 |
import os
import cv2
from scenedetect import VideoManager, SceneManager
from scenedetect.detectors import ContentDetector
from moviepy.editor import VideoFileClip
from transformers import CLIPProcessor, CLIPModel
import torch
import yt_dlp
from PIL import Image
import uuid
from torchvision import models, transforms
from torch.nn import functional as F
import numpy as np
categories = ["Joy", "Trust", "Fear", "Surprise", "Sadness", "Disgust", "Anger", "Anticipation"]
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model = CLIPModel.from_pretrained("openai/clip-vit-base-patch32").to(device)
processor = CLIPProcessor.from_pretrained("openai/clip-vit-base-patch32")
# Load ResNet-50 model
resnet50 = models.resnet50(pretrained=True)
resnet50.eval().to(device)
def classify_frame(frame):
# Preprocess the image
preprocess = transforms.Compose([
transforms.Resize(256),
transforms.CenterCrop(224),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
])
input_tensor = preprocess(Image.fromarray(frame))
input_batch = input_tensor.unsqueeze(0).to(device)
# Predict with ResNet-50
with torch.no_grad():
output = resnet50(input_batch)
probabilities = F.softmax(output[0], dim=0)
# Create a numpy array from the probabilities of the categories
# This example assumes each category is mapped to a model output directly
results_array = np.array([probabilities[i].item() for i in range(len(categories))])
return results_array
def download_video(url):
ydl_opts = {
'format': 'bestvideo[height<=1440]+bestaudio/best[height<=1440]',
'outtmpl': f'temp_videos/{uuid.uuid4()}_video.%(ext)s',
'merge_output_format': 'mp4',
}
with yt_dlp.YoutubeDL(ydl_opts) as ydl:
result = ydl.extract_info(url, download=True)
video_filename = ydl.prepare_filename(result)
safe_filename = sanitize_filename(video_filename)
if os.path.exists(video_filename) and video_filename != safe_filename:
os.rename(video_filename, safe_filename)
return safe_filename
def sanitize_filename(filename):
return "".join([c if c.isalnum() or c in " .-_()" else "_" for c in filename])
def find_scenes(video_path):
video_manager = VideoManager([video_path])
scene_manager = SceneManager()
scene_manager.add_detector(ContentDetector(threshold=33)) # Adjusted threshold for finer segmentation
video_manager.set_downscale_factor()
video_manager.start()
scene_manager.detect_scenes(frame_source=video_manager)
scene_list = scene_manager.get_scene_list()
video_manager.release()
scenes = [(start.get_timecode(), end.get_timecode()) for start, end in scene_list]
return scenes
def convert_timestamp_to_seconds(timestamp):
h, m, s = map(float, timestamp.split(':'))
return int(h) * 3600 + int(m) * 60 + s
def extract_frames(video, start_time, end_time):
frames = []
start_seconds = convert_timestamp_to_seconds(start_time)
end_seconds = convert_timestamp_to_seconds(end_time)
video_clip = video.subclip(start_seconds, end_seconds)
for frame_time in range(0, int(video_clip.duration * video_clip.fps), int(video_clip.fps / 4)):
frame = video_clip.get_frame(frame_time / video_clip.fps)
frames.append(frame)
return frames
def analyze_scenes(video_path, scenes, description, batch_size=45):
scene_scores = []
negative_descriptions = [
"black screen",
"Intro text for a video",
"dark scene without much contrast",
"No people are in this scene",
"A still shot of natural scenery",
"Still-camera shot of a person's face"
]
preprocess = transforms.Compose([
transforms.ToTensor(),
transforms.Resize((224, 224)),
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
])
text_inputs = processor(text=[description] + negative_descriptions, return_tensors="pt", padding=True).to(device)
text_features = model.get_text_features(**text_inputs).detach()
positive_feature, negative_features = text_features[0], text_features[1:]
#print("Negative features shape:", negative_features.shape)
video = VideoFileClip(video_path)
for scene_num, (start_time, end_time) in enumerate(scenes):
frames = extract_frames(video, start_time, end_time)
if not frames:
print(f"Scene {scene_num + 1}: Start={start_time}, End={end_time} - No frames extracted")
continue
batches = [frames[i:i + batch_size] for i in range(0, len(frames), batch_size)]
scene_prob = 0.0
sentiment_distributions = np.zeros(8)
for batch in batches:
batch_tensors = torch.stack([preprocess(frame) for frame in batch]).to(device)
with torch.no_grad():
image_features = model.get_image_features(pixel_values=batch_tensors).detach()
#print("Image Features Shape:", image_features.shape)
positive_similarities = torch.cosine_similarity(image_features, positive_feature.unsqueeze(0).expand_as(image_features))
negative_mean = negative_features.mean(dim=0).unsqueeze(0).expand_as(image_features)
negative_similarities = torch.cosine_similarity(image_features, negative_mean)
scene_prob += (positive_similarities.mean().item() - negative_similarities.mean().item())
for frame in batch:
frame_sentiments = classify_frame(frame)
sentiment_distributions += np.array(frame_sentiments)
sentiment_distributions /= len(frames)
sentiment_percentages = {category: round(prob * 100, 2) for category, prob in zip(categories, sentiment_distributions)}
scene_prob /= len(frames)
scene_duration = convert_timestamp_to_seconds(end_time) - convert_timestamp_to_seconds(start_time)
print(f"Scene {scene_num + 1}: Start={start_time}, End={end_time}, Probability={scene_prob}, Duration={scene_duration}, Sentiments: {sentiment_percentages}")
scene_scores.append((scene_prob, start_time, end_time, scene_duration, sentiment_percentages))
scene_scores.sort(reverse=True, key=lambda x: x[0])
top_3_scenes = scene_scores[:3]
best_scene = max(top_3_scenes, key=lambda x: x[3])
if best_scene:
print(f"Best Scene: Start={best_scene[1]}, End={best_scene[2]}, Probability={best_scene[0]}, Duration={best_scene[3]}, Sentiments: {best_scene[4]}")
return (best_scene[1], best_scene[2]), best_scene[4]
else:
print("No suitable scene found")
return None, {}
def extract_best_scene(video_path, scene):
if scene is None:
return None
start_time, end_time = scene
start_seconds = convert_timestamp_to_seconds(start_time)
end_seconds = convert_timestamp_to_seconds(end_time)
video_clip = VideoFileClip(video_path).subclip(start_seconds, end_seconds)
return video_clip
def cleanup_temp_files():
temp_dir = 'temp_videos'
if os.path.exists(temp_dir):
for file in os.listdir(temp_dir):
file_path = os.path.join(temp_dir, file)
try:
if os.path.isfile(file_path):
os.unlink(file_path)
except Exception as e:
print(f"Error: {e}") |