jschwab21 commited on
Commit
c0f5c8c
·
verified ·
1 Parent(s): bdb3f22

Update video_processing.py

Browse files
Files changed (1) hide show
  1. video_processing.py +6 -3
video_processing.py CHANGED
@@ -21,6 +21,7 @@ processor = CLIPProcessor.from_pretrained("openai/clip-vit-base-patch32")
21
 
22
  def classify_frame(frame):
23
  categories = ["Joy", "Trust", "Fear", "Surprise", "Sadness", "Disgust", "Anger", "Anticipation"]
 
24
  # Load ResNet-50 model
25
  resnet50 = models.resnet50(pretrained=True)
26
  resnet50.eval().to(device)
@@ -40,9 +41,11 @@ def classify_frame(frame):
40
  output = resnet50(input_batch)
41
  probabilities = F.softmax(output[0], dim=0)
42
 
43
- # Assuming categories correspond to indices (this is for demo, adjust accordingly)
44
- results = {categories[i]: probabilities[i].item() for i in range(len(categories))}
45
- return results
 
 
46
 
47
 
48
  def download_video(url):
 
21
 
22
  def classify_frame(frame):
23
  categories = ["Joy", "Trust", "Fear", "Surprise", "Sadness", "Disgust", "Anger", "Anticipation"]
24
+
25
  # Load ResNet-50 model
26
  resnet50 = models.resnet50(pretrained=True)
27
  resnet50.eval().to(device)
 
41
  output = resnet50(input_batch)
42
  probabilities = F.softmax(output[0], dim=0)
43
 
44
+ # Create a numpy array from the probabilities of the categories
45
+ # This example assumes each category is mapped to a model output directly
46
+ results_array = np.array([probabilities[i].item() for i in range(len(categories))])
47
+
48
+ return results_array
49
 
50
 
51
  def download_video(url):