Spaces:
Sleeping
Sleeping
Update video_processing.py
Browse files- video_processing.py +3 -3
video_processing.py
CHANGED
@@ -93,7 +93,7 @@ def extract_frames(video, start_time, end_time):
|
|
93 |
frames.append(frame)
|
94 |
return frames
|
95 |
|
96 |
-
def analyze_scenes(video_path, scenes, description, batch_size=
|
97 |
scene_scores = []
|
98 |
negative_descriptions = [
|
99 |
"black screen",
|
@@ -112,7 +112,7 @@ def analyze_scenes(video_path, scenes, description, batch_size=4):
|
|
112 |
text_inputs = processor(text=[description] + negative_descriptions, return_tensors="pt", padding=True).to(device)
|
113 |
text_features = model.get_text_features(**text_inputs).detach()
|
114 |
positive_feature, negative_features = text_features[0], text_features[1:]
|
115 |
-
print("Negative features shape:", negative_features.shape)
|
116 |
video = VideoFileClip(video_path)
|
117 |
|
118 |
for scene_num, (start_time, end_time) in enumerate(scenes):
|
@@ -129,7 +129,7 @@ def analyze_scenes(video_path, scenes, description, batch_size=4):
|
|
129 |
batch_tensors = torch.stack([preprocess(frame) for frame in batch]).to(device)
|
130 |
with torch.no_grad():
|
131 |
image_features = model.get_image_features(pixel_values=batch_tensors).detach()
|
132 |
-
print("Image Features Shape:", image_features.shape)
|
133 |
|
134 |
positive_similarities = torch.cosine_similarity(image_features, positive_feature.unsqueeze(0).expand_as(image_features))
|
135 |
negative_mean = negative_features.mean(dim=0).unsqueeze(0).expand_as(image_features)
|
|
|
93 |
frames.append(frame)
|
94 |
return frames
|
95 |
|
96 |
+
def analyze_scenes(video_path, scenes, description, batch_size=10):
|
97 |
scene_scores = []
|
98 |
negative_descriptions = [
|
99 |
"black screen",
|
|
|
112 |
text_inputs = processor(text=[description] + negative_descriptions, return_tensors="pt", padding=True).to(device)
|
113 |
text_features = model.get_text_features(**text_inputs).detach()
|
114 |
positive_feature, negative_features = text_features[0], text_features[1:]
|
115 |
+
#print("Negative features shape:", negative_features.shape)
|
116 |
video = VideoFileClip(video_path)
|
117 |
|
118 |
for scene_num, (start_time, end_time) in enumerate(scenes):
|
|
|
129 |
batch_tensors = torch.stack([preprocess(frame) for frame in batch]).to(device)
|
130 |
with torch.no_grad():
|
131 |
image_features = model.get_image_features(pixel_values=batch_tensors).detach()
|
132 |
+
#print("Image Features Shape:", image_features.shape)
|
133 |
|
134 |
positive_similarities = torch.cosine_similarity(image_features, positive_feature.unsqueeze(0).expand_as(image_features))
|
135 |
negative_mean = negative_features.mean(dim=0).unsqueeze(0).expand_as(image_features)
|