jschwab21 commited on
Commit
33428af
·
verified ·
1 Parent(s): 6097f87

Update video_processing.py

Browse files
Files changed (1) hide show
  1. video_processing.py +111 -89
video_processing.py CHANGED
@@ -7,117 +7,139 @@ from transformers import CLIPProcessor, CLIPModel
7
  import torch
8
  import yt_dlp
9
 
10
- def process_video(video_url, description):
11
- # Download or load the video from the URL
12
- video_path = download_video(video_url)
13
-
14
- # Segment video into scenes
15
- scenes = find_scenes(video_path)
16
 
17
- # Extract frames and analyze with CLIP model
18
- best_scene = analyze_scenes(video_path, scenes, description)
19
-
20
- # Extract the best scene into a final clip
21
- final_clip = extract_best_scene(video_path, best_scene)
22
-
23
- # Ensure the output directory exists
24
- output_dir = "output"
25
- os.makedirs(output_dir, exist_ok=True)
26
- final_clip_path = os.path.join(output_dir, "final_clip.mp4")
27
-
28
- # Save and return the final clip
29
- try:
30
- if os.path.exists(final_clip_path):
31
- os.remove(final_clip_path)
32
- final_clip.write_videofile(final_clip_path, codec='libx264', audio_codec='aac')
33
- except Exception as e:
34
- return str(e)
35
 
36
- return final_clip_path
 
37
 
38
  def find_scenes(video_path):
39
- # Create a video manager object for the video
40
  video_manager = VideoManager([video_path])
41
  scene_manager = SceneManager()
42
-
43
- # Add ContentDetector algorithm with a threshold. Adjust threshold as needed.
44
  scene_manager.add_detector(ContentDetector(threshold=30))
45
-
46
- # Start the video manager and perform scene detection
47
  video_manager.set_downscale_factor()
48
  video_manager.start()
49
  scene_manager.detect_scenes(frame_source=video_manager)
50
-
51
- # Obtain list of detected scenes as timecodes
52
  scene_list = scene_manager.get_scene_list()
53
  video_manager.release()
54
-
55
- # Format the list of scenes as start and end timecodes
56
- scenes = [(start.get_timecode(), end.get_timecode()) for start, end in scene_list]
57
- return scenes
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
58
 
59
  def convert_timestamp_to_seconds(timestamp):
60
- """Convert a timestamp in HH:MM:SS format to seconds."""
61
  h, m, s = map(float, timestamp.split(':'))
62
  return int(h) * 3600 + int(m) * 60 + s
63
 
64
- def extract_frames(video_path, start_time, end_time):
65
- frames = []
66
- start_seconds = convert_timestamp_to_seconds(start_time)
67
- end_seconds = convert_timestamp_to_seconds(end_time)
68
- video_clip = VideoFileClip(video_path).subclip(start_seconds, end_seconds)
69
 
70
- for frame_time in range(0, int(video_clip.duration), 5):
71
- frame = video_clip.get_frame(frame_time)
72
- frames.append(frame)
73
 
74
- return frames
 
 
75
 
76
- def analyze_scenes(video_path, scenes, description):
77
- # Load CLIP model and processor
78
- model = CLIPModel.from_pretrained("openai/clip-vit-base-patch32")
79
- processor = CLIPProcessor.from_pretrained("openai/clip-vit-base-patch32")
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
80
 
81
- best_scene = None
82
- highest_prob = 0.0
83
 
84
- for start_time, end_time in scenes:
85
- # Extract every 5th frame from the scene
86
- frames = extract_frames(video_path, start_time, end_time)
87
 
88
- # Analyze frames with CLIP
89
- for frame in frames:
90
- inputs = processor(text=description, images=frame, return_tensors="pt", padding=True)
91
- outputs = model(**inputs)
92
- logits_per_image = outputs.logits_per_image
93
- probs = logits_per_image.softmax(dim=1)
94
-
95
- max_prob = max(probs[0]).item()
96
- if max_prob > highest_prob:
97
- highest_prob = max_prob
98
- best_scene = (start_time, end_time)
99
-
100
- return best_scene
101
-
102
- def extract_best_scene(video_path, scene):
103
- if scene is None:
104
- return VideoFileClip(video_path) # Return the entire video if no scene is found
105
-
106
- start_time, end_time = scene
107
- start_seconds = convert_timestamp_to_seconds(start_time)
108
- end_seconds = convert_timestamp_to_seconds(end_time)
109
- video_clip = VideoFileClip(video_path).subclip(start_seconds, end_seconds)
110
- return video_clip
111
 
112
- def download_video(video_url):
113
- ydl_opts = {
114
- 'format': 'bestvideo[height<=1440]+bestaudio/best[height<=1440]',
115
- 'outtmpl': 'downloaded_video.%(ext)s',
116
- 'noplaylist': True,
117
- }
 
 
 
 
 
 
 
 
118
 
119
- with yt_dlp.YoutubeDL(ydl_opts) as ydl:
120
- info_dict = ydl.extract_info(video_url, download=True)
121
- video_file = ydl.prepare_filename(info_dict)
122
-
123
- return video_file
 
7
  import torch
8
  import yt_dlp
9
 
10
+ device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
11
+ model = CLIPModel.from_pretrained("openai/clip-vit-base-patch32").to(device)
12
+ processor = CLIPProcessor.from_pretrained("openai/clip-vit-base-patch32")
 
 
 
13
 
14
+ def download_video(url):
15
+ ydl_opts = {
16
+ 'format': 'bestvideo[height<=1440]+bestaudio/best[height<=1440]',
17
+ 'outtmpl': 'downloaded_video.%(ext)s',
18
+ 'merge_output_format': 'mp4',
19
+ }
20
+ with yt_dlp.YoutubeDL(ydl_opts) as ydl:
21
+ result = ydl.extract_info(url, download=True)
22
+ video_filename = ydl.prepare_filename(result)
23
+ safe_filename = sanitize_filename(video_filename)
24
+ if os.path.exists(video_filename) and video_filename != safe_filename:
25
+ os.rename(video_filename, safe_filename)
26
+ return safe_filename
 
 
 
 
 
27
 
28
+ def sanitize_filename(filename):
29
+ return "".join([c if c.isalnum() or c in " .-_()" else "_" for c in filename])
30
 
31
  def find_scenes(video_path):
 
32
  video_manager = VideoManager([video_path])
33
  scene_manager = SceneManager()
 
 
34
  scene_manager.add_detector(ContentDetector(threshold=30))
 
 
35
  video_manager.set_downscale_factor()
36
  video_manager.start()
37
  scene_manager.detect_scenes(frame_source=video_manager)
 
 
38
  scene_list = scene_manager.get_scene_list()
39
  video_manager.release()
40
+ return scene_list
41
+
42
+ def extract_frames(video_path, scene_list):
43
+ scene_frames = {}
44
+ cap = cv2.VideoCapture(video_path)
45
+ for i, (start_time, end_time) in enumerate(scene_list):
46
+ frames = []
47
+ first_frame = None
48
+ start_frame = start_time.get_frames()
49
+ end_frame = end_time.get_frames()
50
+ cap.set(cv2.CAP_PROP_POS_FRAMES, start_frame)
51
+ while cap.get(cv2.CAP_PROP_POS_FRAMES) < end_frame:
52
+ ret, frame = cap.read()
53
+ if ret:
54
+ if first_frame is None:
55
+ first_frame = frame
56
+ if int(cap.get(cv2.CAP_PROP_POS_FRAMES)) % 5 == 0:
57
+ frames.append(frame)
58
+ scene_frames[i] = (start_time, end_time, frames, first_frame)
59
+ cap.release()
60
+ return scene_frames
61
 
62
  def convert_timestamp_to_seconds(timestamp):
 
63
  h, m, s = map(float, timestamp.split(':'))
64
  return int(h) * 3600 + int(m) * 60 + s
65
 
66
+ def classify_and_categorize_scenes(scene_frames, description_phrases):
67
+ scene_categories = {}
68
+ description_texts = description_phrases
 
 
69
 
70
+ action_indices = [0]
71
+ context_indices = list(set(range(len(description_texts))) - set(action_indices))
 
72
 
73
+ for scene_id, (start_time, end_time, frames, first_frame) in scene_frames.items():
74
+ scene_scores = [0] * len(description_texts)
75
+ valid_frames = 0
76
 
77
+ for frame in frames:
78
+ image = Image.fromarray(frame[..., ::-1])
79
+ image_input = processor(images=image, return_tensors="pt").to(device)
80
+ with torch.no_grad():
81
+ text_inputs = processor(text=description_texts, return_tensors="pt", padding=True).to(device)
82
+ text_features = model.get_text_features(**text_inputs)
83
+ image_features = model.get_image_features(**image_input)
84
+ logits = (image_features @ text_features.T).squeeze()
85
+ probs = logits.softmax(dim=0)
86
+ scene_scores = [sum(x) for x in zip(scene_scores, probs.tolist())]
87
+ valid_frames += 1
88
+
89
+ if valid_frames > 0:
90
+ scene_scores = [score / valid_frames for score in scene_scores]
91
+ action_confidence = sum(scene_scores[i] for i in action_indices) / len(action_indices)
92
+ context_confidence = sum(scene_scores[i] for i in context_indices) / len(context_indices)
93
+
94
+ best_description_index = scene_scores.index(max(scene_scores))
95
+ best_description = description_texts[best_description_index]
96
+
97
+ if action_confidence > context_confidence:
98
+ category = "Action Scene"
99
+ confidence = action_confidence
100
+ else:
101
+ category = "Context Scene"
102
+ confidence = context_confidence
103
+
104
+ duration = end_time.get_seconds() - start_time.get_seconds()
105
+ scene_categories[scene_id] = {
106
+ "category": category,
107
+ "confidence": confidence,
108
+ "start_time": str(start_time),
109
+ "end_time": str(end_time),
110
+ "duration": duration,
111
+ "first_frame": first_frame,
112
+ "best_description": best_description
113
+ }
114
+
115
+ return scene_categories
116
+
117
+ def save_clip(video_path, scene_info, output_directory, scene_id):
118
+ output_filename = f"scene_{scene_id+1}_{scene_info['category'].replace(' ', '_')}.mp4"
119
+ output_filepath = os.path.join(output_directory, output_filename)
120
+
121
+ start_seconds = convert_timestamp_to_seconds(scene_info['start_time'])
122
+ end_seconds = convert_timestamp_to_seconds(scene_info['end_time'])
123
 
124
+ video_clip = VideoFileClip(video_path).subclip(start_seconds, end_seconds)
 
125
 
126
+ video_clip.write_videofile(output_filepath, codec='libx264', audio_codec='aac')
127
+ video_clip.close()
 
128
 
129
+ return output_filepath, scene_info['first_frame']
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
130
 
131
+ def process_video(video_url, description):
132
+ output_directory = "output"
133
+ os.makedirs(output_directory, exist_ok=True)
134
+
135
+ video_path = download_video(video_url)
136
+ scenes = find_scenes(video_path)
137
+ scene_frames = extract_frames(video_path, scenes)
138
+ description_phrases = [description] # Modify if multiple descriptions are needed
139
+ scene_categories = classify_and_categorize_scenes(scene_frames, description_phrases)
140
+
141
+ best_scene = max(scene_categories.items(), key=lambda x: x[1]['confidence'])[1]
142
+ clip_path, first_frame = save_clip(video_path, best_scene, output_directory, 0)
143
+
144
+ return clip_path
145