jschwab21 commited on
Commit
36c8dbf
·
verified ·
1 Parent(s): 247d989

Update video_processing.py

Browse files
Files changed (1) hide show
  1. video_processing.py +3 -1
video_processing.py CHANGED
@@ -112,7 +112,7 @@ def analyze_scenes(video_path, scenes, description, batch_size=4):
112
  text_inputs = processor(text=[description] + negative_descriptions, return_tensors="pt", padding=True).to(device)
113
  text_features = model.get_text_features(**text_inputs).detach()
114
  positive_feature, negative_features = text_features[0], text_features[1:]
115
-
116
  video = VideoFileClip(video_path)
117
 
118
  for scene_num, (start_time, end_time) in enumerate(scenes):
@@ -130,6 +130,8 @@ def analyze_scenes(video_path, scenes, description, batch_size=4):
130
  batch_tensors = torch.stack([preprocess(frame) for frame in batch]).to(device)
131
  with torch.no_grad():
132
  image_features = model.get_image_features(pixel_values=batch_tensors).detach()
 
 
133
  positive_similarities = torch.cosine_similarity(image_features, positive_feature.unsqueeze(0))
134
  negative_similarities = torch.cosine_similarity(image_features, negative_features.unsqueeze(0).mean(dim=0, keepdim=True))
135
  scene_prob += positive_similarities.mean().item() - negative_similarities.mean().item()
 
112
  text_inputs = processor(text=[description] + negative_descriptions, return_tensors="pt", padding=True).to(device)
113
  text_features = model.get_text_features(**text_inputs).detach()
114
  positive_feature, negative_features = text_features[0], text_features[1:]
115
+ print("Negative features shape:", negative_features.shape())
116
  video = VideoFileClip(video_path)
117
 
118
  for scene_num, (start_time, end_time) in enumerate(scenes):
 
130
  batch_tensors = torch.stack([preprocess(frame) for frame in batch]).to(device)
131
  with torch.no_grad():
132
  image_features = model.get_image_features(pixel_values=batch_tensors).detach()
133
+ print("Image Features Shape:", image_features.shape)
134
+
135
  positive_similarities = torch.cosine_similarity(image_features, positive_feature.unsqueeze(0))
136
  negative_similarities = torch.cosine_similarity(image_features, negative_features.unsqueeze(0).mean(dim=0, keepdim=True))
137
  scene_prob += positive_similarities.mean().item() - negative_similarities.mean().item()