Spaces:
Sleeping
Sleeping
Update video_processing.py
Browse files- video_processing.py +3 -1
video_processing.py
CHANGED
@@ -112,7 +112,7 @@ def analyze_scenes(video_path, scenes, description, batch_size=4):
|
|
112 |
text_inputs = processor(text=[description] + negative_descriptions, return_tensors="pt", padding=True).to(device)
|
113 |
text_features = model.get_text_features(**text_inputs).detach()
|
114 |
positive_feature, negative_features = text_features[0], text_features[1:]
|
115 |
-
|
116 |
video = VideoFileClip(video_path)
|
117 |
|
118 |
for scene_num, (start_time, end_time) in enumerate(scenes):
|
@@ -130,6 +130,8 @@ def analyze_scenes(video_path, scenes, description, batch_size=4):
|
|
130 |
batch_tensors = torch.stack([preprocess(frame) for frame in batch]).to(device)
|
131 |
with torch.no_grad():
|
132 |
image_features = model.get_image_features(pixel_values=batch_tensors).detach()
|
|
|
|
|
133 |
positive_similarities = torch.cosine_similarity(image_features, positive_feature.unsqueeze(0))
|
134 |
negative_similarities = torch.cosine_similarity(image_features, negative_features.unsqueeze(0).mean(dim=0, keepdim=True))
|
135 |
scene_prob += positive_similarities.mean().item() - negative_similarities.mean().item()
|
|
|
112 |
text_inputs = processor(text=[description] + negative_descriptions, return_tensors="pt", padding=True).to(device)
|
113 |
text_features = model.get_text_features(**text_inputs).detach()
|
114 |
positive_feature, negative_features = text_features[0], text_features[1:]
|
115 |
+
print("Negative features shape:", negative_features.shape())
|
116 |
video = VideoFileClip(video_path)
|
117 |
|
118 |
for scene_num, (start_time, end_time) in enumerate(scenes):
|
|
|
130 |
batch_tensors = torch.stack([preprocess(frame) for frame in batch]).to(device)
|
131 |
with torch.no_grad():
|
132 |
image_features = model.get_image_features(pixel_values=batch_tensors).detach()
|
133 |
+
print("Image Features Shape:", image_features.shape)
|
134 |
+
|
135 |
positive_similarities = torch.cosine_similarity(image_features, positive_feature.unsqueeze(0))
|
136 |
negative_similarities = torch.cosine_similarity(image_features, negative_features.unsqueeze(0).mean(dim=0, keepdim=True))
|
137 |
scene_prob += positive_similarities.mean().item() - negative_similarities.mean().item()
|