File size: 4,689 Bytes
ea189f9
 
060d492
a14015e
060d492
 
5bbeebd
060d492
 
ea189f9
 
 
82930cd
 
 
 
 
 
 
 
 
 
 
 
060d492
ea189f9
060d492
 
 
 
 
 
 
a14015e
ea189f9
ad5a6b0
 
 
 
 
 
 
060d492
ad5a6b0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
060d492
ad5a6b0
 
060d492
ad5a6b0
 
 
 
060d492
ad5a6b0
ea189f9
402148f
 
c874ca6
ea9d83f
c874ca6
 
402148f
ea189f9
 
 
 
 
 
 
402148f
ea189f9
 
 
 
 
 
 
 
 
 
402148f
ea189f9
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
import pandas as pd
import numpy as np
from sklearn.preprocessing import StandardScaler, OneHotEncoder
from sklearn.ensemble import VotingRegressor
from sklearn.linear_model import LinearRegression
from sklearn.tree import DecisionTreeRegressor
from sklearn.base import BaseEstimator, RegressorMixin
from sklearn.compose import ColumnTransformer
from sklearn.pipeline import Pipeline
import gradio as gr
import joblib

class FastAIWrapper(BaseEstimator, RegressorMixin):
    def __init__(self, learn):
        self.learn = learn
    
    def fit(self, X, y):
        return self
    
    def predict(self, X):
        dl = self.learn.dls.test_dl(X)
        preds, _ = self.learn.get_preds(dl=dl)
        return preds.numpy().flatten()

# Load data
df = pd.read_csv('City_Employee_Payroll__Current__20240915.csv', low_memory=False)
df = df.replace([np.inf, -np.inf], np.nan)

# Define categorical and continuous variables
cat_names = ['EMPLOYMENT_TYPE', 'JOB_STATUS', 'MOU', 'GENDER', 'ETHNICITY', 'JOB_TITLE', 'DEPARTMENT_NO']
cont_names = ['PAY_YEAR', 'REGULAR_PAY', 'OVERTIME_PAY', 'ALL_OTHER_PAY', 'PAY_RATIO', 'TOTAL_NON_REGULAR_PAY']

# Load the trained model
ensemble = joblib.load('ensemble_model.joblib')

def predict_total_pay(gender, job_title, ethnicity):
    sample = pd.DataFrame({
        'GENDER': [gender],
        'JOB_TITLE': [job_title],
        'ETHNICITY': [ethnicity],
    })
    
    group = df[(df['GENDER'] == gender) & (df['JOB_TITLE'] == job_title) & (df['ETHNICITY'] == ethnicity)]
    if len(group) > 0:
        sample['EMPLOYMENT_TYPE'] = [group['EMPLOYMENT_TYPE'].mode().iloc[0]]
        sample['JOB_STATUS'] = [group['JOB_STATUS'].mode().iloc[0]]
        sample['MOU'] = [group['MOU'].mode().iloc[0]]
        sample['DEPARTMENT_NO'] = [group['DEPARTMENT_NO'].mode().iloc[0]]
        sample['REGULAR_PAY'] = [group['REGULAR_PAY'].mean()]
        sample['OVERTIME_PAY'] = [group['OVERTIME_PAY'].mean()]
        sample['ALL_OTHER_PAY'] = [group['ALL_OTHER_PAY'].mean()]
    else:
        job_group = df[df['JOB_TITLE'] == job_title]
        if len(job_group) > 0:
            sample['EMPLOYMENT_TYPE'] = [job_group['EMPLOYMENT_TYPE'].mode().iloc[0]]
            sample['JOB_STATUS'] = [job_group['JOB_STATUS'].mode().iloc[0]]
            sample['MOU'] = [job_group['MOU'].mode().iloc[0]]
            sample['DEPARTMENT_NO'] = [job_group['DEPARTMENT_NO'].mode().iloc[0]]
            sample['REGULAR_PAY'] = [job_group['REGULAR_PAY'].mean()]
            sample['OVERTIME_PAY'] = [job_group['OVERTIME_PAY'].mean()]
            sample['ALL_OTHER_PAY'] = [job_group['ALL_OTHER_PAY'].mean()]
        else:
            sample['EMPLOYMENT_TYPE'] = [df['EMPLOYMENT_TYPE'].mode().iloc[0]]
            sample['JOB_STATUS'] = [df['JOB_STATUS'].mode().iloc[0]]
            sample['MOU'] = [df['MOU'].mode().iloc[0]]
            sample['DEPARTMENT_NO'] = [df['DEPARTMENT_NO'].mode().iloc[0]]
            sample['REGULAR_PAY'] = [df['REGULAR_PAY'].mean()]
            sample['OVERTIME_PAY'] = [df['OVERTIME_PAY'].mean()]
            sample['ALL_OTHER_PAY'] = [df['ALL_OTHER_PAY'].mean()]
    
    sample['PAY_YEAR'] = [df['PAY_YEAR'].max()]
    sample['PAY_RATIO'] = sample['REGULAR_PAY'] / (sample['OVERTIME_PAY'] + sample['ALL_OTHER_PAY'] + 1)
    sample['TOTAL_NON_REGULAR_PAY'] = sample['OVERTIME_PAY'] + sample['ALL_OTHER_PAY']
    
    categorical_columns = ['GENDER', 'JOB_TITLE', 'ETHNICITY', 'EMPLOYMENT_TYPE', 'JOB_STATUS', 'MOU', 'DEPARTMENT_NO']
    for col in categorical_columns:
        sample[col] = sample[col].astype('object')
    
    prediction = ensemble.predict(sample)[0]
    return prediction

def gradio_predict(gender, ethnicity, job_title):
    predicted_pay = predict_total_pay(gender, job_title, ethnicity)
    if predicted_pay < 0:
        return f"Predicted pay is negative (${predicted_pay:.2f} per year). May indicate financial hardship or unlikelihood of obtaining position."
    else:
        return f"${predicted_pay:.2f} per year"

# Prepare dropdown options
genders = df['GENDER'].dropna().unique().tolist()
ethnicities = df['ETHNICITY'].dropna().unique().tolist()
job_titles = sorted(df['JOB_TITLE'].dropna().unique().tolist())

# Create Gradio interface
iface = gr.Interface(
    fn=gradio_predict,
    inputs=[
        gr.Dropdown(choices=genders, label="Gender"),
        gr.Dropdown(choices=ethnicities, label="Ethnicity"),
        gr.Dropdown(choices=job_titles, label="Job Title")
    ],
    outputs=gr.Textbox(label="Predicted Total Pay"),
    title="LA City Employee Pay Predictor",
    description="Predict the total pay for LA City employees based on gender, ethnicity, and job title."
)

# Launch the interface
iface.launch()