Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,61 +1,45 @@
|
|
1 |
import pandas as pd
|
2 |
import numpy as np
|
|
|
3 |
from sklearn.ensemble import VotingRegressor
|
|
|
|
|
4 |
from sklearn.base import BaseEstimator, RegressorMixin
|
|
|
|
|
5 |
import gradio as gr
|
6 |
import joblib
|
7 |
|
8 |
-
|
9 |
-
def __init__(self, learn):
|
10 |
-
self.learn = learn
|
11 |
-
|
12 |
-
def fit(self, X, y):
|
13 |
-
return self
|
14 |
-
|
15 |
-
def predict(self, X):
|
16 |
-
dl = self.learn.dls.test_dl(X)
|
17 |
-
preds, _ = self.learn.get_preds(dl=dl)
|
18 |
-
return preds.numpy().flatten()
|
19 |
-
|
20 |
-
# Load your data and trained model
|
21 |
df = pd.read_csv('City_Employee_Payroll__Current__20240915.csv', low_memory=False)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
22 |
ensemble = joblib.load('ensemble_model.joblib')
|
23 |
|
24 |
def predict_total_pay(gender, job_title, ethnicity):
|
25 |
-
# Function to predict total pay based on input parameters
|
26 |
-
# Parameters:
|
27 |
-
# gender: str - The gender of the employee
|
28 |
-
# job_title: str - The job title of the employee
|
29 |
-
# ethnicity: str - The ethnicity of the employee
|
30 |
-
|
31 |
-
# Create a sample input DataFrame with the given parameters
|
32 |
-
# This will be used as input for the prediction model
|
33 |
sample = pd.DataFrame({
|
34 |
'GENDER': [gender],
|
35 |
'JOB_TITLE': [job_title],
|
36 |
'ETHNICITY': [ethnicity],
|
37 |
})
|
38 |
-
|
39 |
-
# Filter the main DataFrame (df) to find exact matches for the input combination
|
40 |
-
# This creates a subset of data that matches all three input parameters
|
41 |
-
group = df[(df['GENDER'] == gender) & (df['JOB_TITLE'] == job_title) & (df['ETHNICITY'] == ethnicity)]
|
42 |
|
|
|
43 |
if len(group) > 0:
|
44 |
-
# If exact matches are found, use their statistics to populate the sample
|
45 |
-
# For categorical variables, use the mode (most frequent value)
|
46 |
sample['EMPLOYMENT_TYPE'] = [group['EMPLOYMENT_TYPE'].mode().iloc[0]]
|
47 |
sample['JOB_STATUS'] = [group['JOB_STATUS'].mode().iloc[0]]
|
48 |
sample['MOU'] = [group['MOU'].mode().iloc[0]]
|
49 |
sample['DEPARTMENT_NO'] = [group['DEPARTMENT_NO'].mode().iloc[0]]
|
50 |
-
# For numerical variables, use the mean
|
51 |
sample['REGULAR_PAY'] = [group['REGULAR_PAY'].mean()]
|
52 |
sample['OVERTIME_PAY'] = [group['OVERTIME_PAY'].mean()]
|
53 |
sample['ALL_OTHER_PAY'] = [group['ALL_OTHER_PAY'].mean()]
|
54 |
else:
|
55 |
-
# If no exact match is found, try to find a broader match based on job_title
|
56 |
job_group = df[df['JOB_TITLE'] == job_title]
|
57 |
if len(job_group) > 0:
|
58 |
-
# If job title matches are found, use their statistics
|
59 |
sample['EMPLOYMENT_TYPE'] = [job_group['EMPLOYMENT_TYPE'].mode().iloc[0]]
|
60 |
sample['JOB_STATUS'] = [job_group['JOB_STATUS'].mode().iloc[0]]
|
61 |
sample['MOU'] = [job_group['MOU'].mode().iloc[0]]
|
@@ -64,7 +48,6 @@ def predict_total_pay(gender, job_title, ethnicity):
|
|
64 |
sample['OVERTIME_PAY'] = [job_group['OVERTIME_PAY'].mean()]
|
65 |
sample['ALL_OTHER_PAY'] = [job_group['ALL_OTHER_PAY'].mean()]
|
66 |
else:
|
67 |
-
# If no job title match is found, use overall statistics from the entire dataset
|
68 |
sample['EMPLOYMENT_TYPE'] = [df['EMPLOYMENT_TYPE'].mode().iloc[0]]
|
69 |
sample['JOB_STATUS'] = [df['JOB_STATUS'].mode().iloc[0]]
|
70 |
sample['MOU'] = [df['MOU'].mode().iloc[0]]
|
@@ -72,26 +55,16 @@ def predict_total_pay(gender, job_title, ethnicity):
|
|
72 |
sample['REGULAR_PAY'] = [df['REGULAR_PAY'].mean()]
|
73 |
sample['OVERTIME_PAY'] = [df['OVERTIME_PAY'].mean()]
|
74 |
sample['ALL_OTHER_PAY'] = [df['ALL_OTHER_PAY'].mean()]
|
75 |
-
|
76 |
-
# Set PAY_YEAR to the most recent year in the dataset
|
77 |
-
sample['PAY_YEAR'] = [df['PAY_YEAR'].max()]
|
78 |
|
79 |
-
|
80 |
-
# PAY_RATIO: Ratio of regular pay to other types of pay
|
81 |
sample['PAY_RATIO'] = sample['REGULAR_PAY'] / (sample['OVERTIME_PAY'] + sample['ALL_OTHER_PAY'] + 1)
|
82 |
-
# TOTAL_NON_REGULAR_PAY: Sum of overtime pay and all other pay
|
83 |
sample['TOTAL_NON_REGULAR_PAY'] = sample['OVERTIME_PAY'] + sample['ALL_OTHER_PAY']
|
84 |
-
|
85 |
-
# Ensure all categorical columns are of type 'object' to prevent type issues with the model
|
86 |
categorical_columns = ['GENDER', 'JOB_TITLE', 'ETHNICITY', 'EMPLOYMENT_TYPE', 'JOB_STATUS', 'MOU', 'DEPARTMENT_NO']
|
87 |
for col in categorical_columns:
|
88 |
sample[col] = sample[col].astype('object')
|
89 |
-
|
90 |
-
# Use the ensemble model to make a prediction
|
91 |
-
# The model takes the sample DataFrame as input and returns a predicted total pay
|
92 |
-
prediction = ensemble.predict(sample)[0]
|
93 |
|
94 |
-
|
95 |
return prediction
|
96 |
|
97 |
def gradio_predict(gender, ethnicity, job_title):
|
|
|
1 |
import pandas as pd
|
2 |
import numpy as np
|
3 |
+
from sklearn.preprocessing import StandardScaler, OneHotEncoder
|
4 |
from sklearn.ensemble import VotingRegressor
|
5 |
+
from sklearn.linear_model import LinearRegression
|
6 |
+
from sklearn.tree import DecisionTreeRegressor
|
7 |
from sklearn.base import BaseEstimator, RegressorMixin
|
8 |
+
from sklearn.compose import ColumnTransformer
|
9 |
+
from sklearn.pipeline import Pipeline
|
10 |
import gradio as gr
|
11 |
import joblib
|
12 |
|
13 |
+
# Load data
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
14 |
df = pd.read_csv('City_Employee_Payroll__Current__20240915.csv', low_memory=False)
|
15 |
+
df = df.replace([np.inf, -np.inf], np.nan)
|
16 |
+
|
17 |
+
# Define categorical and continuous variables
|
18 |
+
cat_names = ['EMPLOYMENT_TYPE', 'JOB_STATUS', 'MOU', 'GENDER', 'ETHNICITY', 'JOB_TITLE', 'DEPARTMENT_NO']
|
19 |
+
cont_names = ['PAY_YEAR', 'REGULAR_PAY', 'OVERTIME_PAY', 'ALL_OTHER_PAY', 'PAY_RATIO', 'TOTAL_NON_REGULAR_PAY']
|
20 |
+
|
21 |
+
# Load the trained model
|
22 |
ensemble = joblib.load('ensemble_model.joblib')
|
23 |
|
24 |
def predict_total_pay(gender, job_title, ethnicity):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
25 |
sample = pd.DataFrame({
|
26 |
'GENDER': [gender],
|
27 |
'JOB_TITLE': [job_title],
|
28 |
'ETHNICITY': [ethnicity],
|
29 |
})
|
|
|
|
|
|
|
|
|
30 |
|
31 |
+
group = df[(df['GENDER'] == gender) & (df['JOB_TITLE'] == job_title) & (df['ETHNICITY'] == ethnicity)]
|
32 |
if len(group) > 0:
|
|
|
|
|
33 |
sample['EMPLOYMENT_TYPE'] = [group['EMPLOYMENT_TYPE'].mode().iloc[0]]
|
34 |
sample['JOB_STATUS'] = [group['JOB_STATUS'].mode().iloc[0]]
|
35 |
sample['MOU'] = [group['MOU'].mode().iloc[0]]
|
36 |
sample['DEPARTMENT_NO'] = [group['DEPARTMENT_NO'].mode().iloc[0]]
|
|
|
37 |
sample['REGULAR_PAY'] = [group['REGULAR_PAY'].mean()]
|
38 |
sample['OVERTIME_PAY'] = [group['OVERTIME_PAY'].mean()]
|
39 |
sample['ALL_OTHER_PAY'] = [group['ALL_OTHER_PAY'].mean()]
|
40 |
else:
|
|
|
41 |
job_group = df[df['JOB_TITLE'] == job_title]
|
42 |
if len(job_group) > 0:
|
|
|
43 |
sample['EMPLOYMENT_TYPE'] = [job_group['EMPLOYMENT_TYPE'].mode().iloc[0]]
|
44 |
sample['JOB_STATUS'] = [job_group['JOB_STATUS'].mode().iloc[0]]
|
45 |
sample['MOU'] = [job_group['MOU'].mode().iloc[0]]
|
|
|
48 |
sample['OVERTIME_PAY'] = [job_group['OVERTIME_PAY'].mean()]
|
49 |
sample['ALL_OTHER_PAY'] = [job_group['ALL_OTHER_PAY'].mean()]
|
50 |
else:
|
|
|
51 |
sample['EMPLOYMENT_TYPE'] = [df['EMPLOYMENT_TYPE'].mode().iloc[0]]
|
52 |
sample['JOB_STATUS'] = [df['JOB_STATUS'].mode().iloc[0]]
|
53 |
sample['MOU'] = [df['MOU'].mode().iloc[0]]
|
|
|
55 |
sample['REGULAR_PAY'] = [df['REGULAR_PAY'].mean()]
|
56 |
sample['OVERTIME_PAY'] = [df['OVERTIME_PAY'].mean()]
|
57 |
sample['ALL_OTHER_PAY'] = [df['ALL_OTHER_PAY'].mean()]
|
|
|
|
|
|
|
58 |
|
59 |
+
sample['PAY_YEAR'] = [df['PAY_YEAR'].max()]
|
|
|
60 |
sample['PAY_RATIO'] = sample['REGULAR_PAY'] / (sample['OVERTIME_PAY'] + sample['ALL_OTHER_PAY'] + 1)
|
|
|
61 |
sample['TOTAL_NON_REGULAR_PAY'] = sample['OVERTIME_PAY'] + sample['ALL_OTHER_PAY']
|
62 |
+
|
|
|
63 |
categorical_columns = ['GENDER', 'JOB_TITLE', 'ETHNICITY', 'EMPLOYMENT_TYPE', 'JOB_STATUS', 'MOU', 'DEPARTMENT_NO']
|
64 |
for col in categorical_columns:
|
65 |
sample[col] = sample[col].astype('object')
|
|
|
|
|
|
|
|
|
66 |
|
67 |
+
prediction = ensemble.predict(sample)[0]
|
68 |
return prediction
|
69 |
|
70 |
def gradio_predict(gender, ethnicity, job_title):
|