huntrezz commited on
Commit
402148f
·
verified ·
1 Parent(s): 97fb27b

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +6 -27
app.py CHANGED
@@ -21,32 +21,6 @@ class FastAIWrapper(BaseEstimator, RegressorMixin):
21
  df = pd.read_csv('City_Employee_Payroll__Current__20240915.csv', low_memory=False)
22
  ensemble = joblib.load('ensemble_model.joblib')
23
 
24
- def predict_total_pay(gender, job_title, ethnicity):
25
- # Create a sample input DataFrame
26
- sample = pd.DataFrame({
27
- 'GENDER': [gender],
28
- 'JOB_TITLE': [job_title],
29
- 'ETHNICITY': [ethnicity],
30
- })
31
-
32
- # Fill in other required features (you may need to adjust this based on your model's requirements)
33
- sample['EMPLOYMENT_TYPE'] = df['EMPLOYMENT_TYPE'].mode().iloc[0]
34
- sample['JOB_STATUS'] = df['JOB_STATUS'].mode().iloc[0]
35
- sample['MOU'] = df['MOU'].mode().iloc[0]
36
- sample['DEPARTMENT_NO'] = df['DEPARTMENT_NO'].mode().iloc[0]
37
- sample['PAY_YEAR'] = df['PAY_YEAR'].max()
38
- sample['REGULAR_PAY'] = df['REGULAR_PAY'].mean()
39
- sample['OVERTIME_PAY'] = df['OVERTIME_PAY'].mean()
40
- sample['ALL_OTHER_PAY'] = df['ALL_OTHER_PAY'].mean()
41
-
42
- # Calculate derived features
43
- sample['PAY_RATIO'] = sample['REGULAR_PAY'] / (sample['OVERTIME_PAY'] + sample['ALL_OTHER_PAY'] + 1)
44
- sample['TOTAL_NON_REGULAR_PAY'] = sample['OVERTIME_PAY'] + sample['ALL_OTHER_PAY']
45
-
46
- # Make prediction
47
- prediction = ensemble.predict(sample)[0]
48
- return prediction
49
-
50
  def predict_total_pay(gender, job_title, ethnicity):
51
  # Function to predict total pay based on input parameters
52
  # Parameters:
@@ -120,6 +94,10 @@ def predict_total_pay(gender, job_title, ethnicity):
120
  # Return the predicted total pay
121
  return prediction
122
 
 
 
 
 
123
  # Prepare dropdown options
124
  genders = df['GENDER'].dropna().unique().tolist()
125
  ethnicities = df['ETHNICITY'].dropna().unique().tolist()
@@ -127,7 +105,7 @@ job_titles = sorted(df['JOB_TITLE'].dropna().unique().tolist())
127
 
128
  # Create Gradio interface
129
  iface = gr.Interface(
130
- fn=predict_total_pay,
131
  inputs=[
132
  gr.Dropdown(choices=genders, label="Gender"),
133
  gr.Dropdown(choices=ethnicities, label="Ethnicity"),
@@ -138,4 +116,5 @@ iface = gr.Interface(
138
  description="Predict the total pay for LA City employees based on gender, ethnicity, and job title."
139
  )
140
 
 
141
  iface.launch()
 
21
  df = pd.read_csv('City_Employee_Payroll__Current__20240915.csv', low_memory=False)
22
  ensemble = joblib.load('ensemble_model.joblib')
23
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
24
  def predict_total_pay(gender, job_title, ethnicity):
25
  # Function to predict total pay based on input parameters
26
  # Parameters:
 
94
  # Return the predicted total pay
95
  return prediction
96
 
97
+ def gradio_predict(gender, ethnicity, job_title):
98
+ predicted_pay = predict_total_pay(gender, job_title, ethnicity)
99
+ return f"${predicted_pay:.2f}"
100
+
101
  # Prepare dropdown options
102
  genders = df['GENDER'].dropna().unique().tolist()
103
  ethnicities = df['ETHNICITY'].dropna().unique().tolist()
 
105
 
106
  # Create Gradio interface
107
  iface = gr.Interface(
108
+ fn=gradio_predict,
109
  inputs=[
110
  gr.Dropdown(choices=genders, label="Gender"),
111
  gr.Dropdown(choices=ethnicities, label="Ethnicity"),
 
116
  description="Predict the total pay for LA City employees based on gender, ethnicity, and job title."
117
  )
118
 
119
+ # Launch the interface
120
  iface.launch()