Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,9 +1,22 @@
|
|
1 |
import pandas as pd
|
2 |
import numpy as np
|
3 |
from sklearn.ensemble import VotingRegressor
|
|
|
4 |
import gradio as gr
|
5 |
import joblib
|
6 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
7 |
# Load your data and trained model
|
8 |
df = pd.read_csv('City_Employee_Payroll__Current__20240915.csv', low_memory=False)
|
9 |
ensemble = joblib.load('ensemble_model.joblib')
|
|
|
1 |
import pandas as pd
|
2 |
import numpy as np
|
3 |
from sklearn.ensemble import VotingRegressor
|
4 |
+
from sklearn.base import BaseEstimator, RegressorMixin
|
5 |
import gradio as gr
|
6 |
import joblib
|
7 |
|
8 |
+
class FastAIWrapper(BaseEstimator, RegressorMixin):
|
9 |
+
def __init__(self, learn):
|
10 |
+
self.learn = learn
|
11 |
+
|
12 |
+
def fit(self, X, y):
|
13 |
+
return self
|
14 |
+
|
15 |
+
def predict(self, X):
|
16 |
+
dl = self.learn.dls.test_dl(X)
|
17 |
+
preds, _ = self.learn.get_preds(dl=dl)
|
18 |
+
return preds.numpy().flatten()
|
19 |
+
|
20 |
# Load your data and trained model
|
21 |
df = pd.read_csv('City_Employee_Payroll__Current__20240915.csv', low_memory=False)
|
22 |
ensemble = joblib.load('ensemble_model.joblib')
|