Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,17 +1,38 @@
|
|
1 |
import pandas as pd
|
2 |
import numpy as np
|
|
|
3 |
import gradio as gr
|
4 |
import joblib
|
5 |
|
6 |
-
# Load
|
7 |
-
ensemble = joblib.load('ensemble_model.joblib')
|
8 |
-
|
9 |
-
# Load your data
|
10 |
df = pd.read_csv('City_Employee_Payroll__Current__20240915.csv', low_memory=False)
|
|
|
11 |
|
12 |
def predict_total_pay(gender, job_title, ethnicity):
|
13 |
-
#
|
14 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
15 |
|
16 |
def gradio_predict(gender, ethnicity, job_title):
|
17 |
predicted_pay = predict_total_pay(gender, job_title, ethnicity)
|
|
|
1 |
import pandas as pd
|
2 |
import numpy as np
|
3 |
+
from sklearn.ensemble import VotingRegressor
|
4 |
import gradio as gr
|
5 |
import joblib
|
6 |
|
7 |
+
# Load your data and trained model
|
|
|
|
|
|
|
8 |
df = pd.read_csv('City_Employee_Payroll__Current__20240915.csv', low_memory=False)
|
9 |
+
ensemble = joblib.load('ensemble_model.joblib')
|
10 |
|
11 |
def predict_total_pay(gender, job_title, ethnicity):
|
12 |
+
# Create a sample input DataFrame
|
13 |
+
sample = pd.DataFrame({
|
14 |
+
'GENDER': [gender],
|
15 |
+
'JOB_TITLE': [job_title],
|
16 |
+
'ETHNICITY': [ethnicity],
|
17 |
+
})
|
18 |
+
|
19 |
+
# Fill in other required features (you may need to adjust this based on your model's requirements)
|
20 |
+
sample['EMPLOYMENT_TYPE'] = df['EMPLOYMENT_TYPE'].mode().iloc[0]
|
21 |
+
sample['JOB_STATUS'] = df['JOB_STATUS'].mode().iloc[0]
|
22 |
+
sample['MOU'] = df['MOU'].mode().iloc[0]
|
23 |
+
sample['DEPARTMENT_NO'] = df['DEPARTMENT_NO'].mode().iloc[0]
|
24 |
+
sample['PAY_YEAR'] = df['PAY_YEAR'].max()
|
25 |
+
sample['REGULAR_PAY'] = df['REGULAR_PAY'].mean()
|
26 |
+
sample['OVERTIME_PAY'] = df['OVERTIME_PAY'].mean()
|
27 |
+
sample['ALL_OTHER_PAY'] = df['ALL_OTHER_PAY'].mean()
|
28 |
+
|
29 |
+
# Calculate derived features
|
30 |
+
sample['PAY_RATIO'] = sample['REGULAR_PAY'] / (sample['OVERTIME_PAY'] + sample['ALL_OTHER_PAY'] + 1)
|
31 |
+
sample['TOTAL_NON_REGULAR_PAY'] = sample['OVERTIME_PAY'] + sample['ALL_OTHER_PAY']
|
32 |
+
|
33 |
+
# Make prediction
|
34 |
+
prediction = ensemble.predict(sample)[0]
|
35 |
+
return prediction
|
36 |
|
37 |
def gradio_predict(gender, ethnicity, job_title):
|
38 |
predicted_pay = predict_total_pay(gender, job_title, ethnicity)
|