File size: 5,569 Bytes
89f9a8d 72f9629 89f9a8d c0e52ad 89f9a8d afba6b8 d5d696e fc729c7 d5d696e fc729c7 bc3d031 372f84d bc3d031 afba6b8 501c3b1 afba6b8 bc3d031 773fac0 bc3d031 40cf9b4 7f14dcf 40cf9b4 39ca037 40cf9b4 39ca037 97213c3 39ca037 40cf9b4 7f14dcf 40cf9b4 7f14dcf fc729c7 7f14dcf bc3d031 40cf9b4 bc3d031 5b730e0 bc3d031 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 |
import os
import sys
import numpy as np
import pandas as pd
import streamlit as st
from rdkit import Chem
from rdkit.Chem import Draw
sys.path.insert(0, os.path.abspath("src/"))
st.set_page_config(layout="wide")
basepath = os.path.dirname(__file__)
datapath = os.path.join(basepath, "data")
st.title('HyperDTI: Task-conditioned modeling of drug-target interactions.\n')
st.markdown('')
st.markdown(
"""
🧬 Github: [ml-jku/hyper-dti](https://https://github.com/ml-jku/hyper-dti) 📝 NeurIPS 2022 AI4Science workshop paper: [OpenReview](https://openreview.net/forum?id=dIX34JWnIAL)\n
"""
)
def about_page():
st.markdown(
"""
### About
HyperNetworks have been established as an effective technique to achieve fast adaptation of parameters for
neural networks. Recently, HyperNetwork predictions conditioned on descriptors of tasks have improved
multi-task generalization in various domains, such as personalized federated learning and neural architecture
search. Especially powerful results were achieved in few- and zero-shot settings, attributed to the increased
information sharing by the HyperNetwork. With the rise of new diseases fast discovery of drugs is needed which
requires models that are able to generalize drug-target interaction predictions in low-data scenarios.
In this work, we propose the HyperPCM model, a task-conditioned HyperNetwork approach for the problem of
predicting drug-target interactions in drug discovery. Our model learns to generate a QSAR model specialized on
a given protein target. We demonstrate state-of-the-art performance over previous methods on multiple
well-known benchmarks, particularly in zero-shot settings for unseen protein targets.
"""
#st.image('hyper-dti.png') todo
)
def display_dti():
st.markdown('##')
smiles = st.text_input("Enter the SMILES of the query drug compound", value="CC(=O)OC1=CC=CC=C1C(=O)O", placeholder="CC(=O)OC1=CC=CC=C1C(=O)O")
if smiles:
mol = Chem.MolFromSmiles(smiles)
mol_img = Chem.Draw.MolToImage(mol)
col1, col2, col3 = st.columns(3)
with col1:
st.write("")
with col2:
st.image(mol_img, width = 140)
with col3:
st.write("")
st.markdown('##')
def display_protein():
"""
sequence = st.text_input("Enter the amino-acid sequence of the query protein target", value="HXHVWPVQDAKARFSEFLDACITEGPQIVSRRGAEEAVLVPIGEWRRLQAAA", placeholder="HXHVWPVQDAKARFSEFLDACITEGPQIVSRRGAEEAVLVPIGEWRRLQAAA")
if sequence:
def esm_search(model, sequnce, batch_converter,top_k=5):
batch_labels, batch_strs, batch_tokens = batch_converter([("protein1", sequnce),])
# Extract per-residue representations (on CPU)
with torch.no_grad():
results = model(batch_tokens, repr_layers=[12], return_contacts=True)
token_representations = results["representations"][12]
token_list = token_representations.tolist()[0][0][0]
client = Client(
url=st.secrets["DB_URL"], user=st.secrets["USER"], password=st.secrets["PASSWD"])
result = client.fetch("SELECT seq, distance('topK=500')(representations, " + str(token_list) + ')'+ "as dist FROM default.esm_protein_indexer_768")
result_temp_seq = []
for i in result:
# result_temp_coords = i['seq']
result_temp_seq.append(i['seq'])
result_temp_seq = list(set(result_temp_seq))
result_temp_seq = esm_search(model, sequence, esm_search,top_k=5)
st.text('search result: ')
# tab1, tab2, tab3, tab4, = st.tabs(["Cat", "Dog", "Owl"])
if st.button(result_temp_seq[0]):
print(result_temp_seq[0])
elif st.button(result_temp_seq[1]):
print(result_temp_seq[1])
elif st.button(result_temp_seq[2]):
print(result_temp_seq[2])
elif st.button(result_temp_seq[3]):
print(result_temp_seq[3])
elif st.button(result_temp_seq[4]):
print(result_temp_seq[4])
start[2] = st.pyplot(visualize_3D_Coordinates(result_temp_coords).figure)
def show_protein_structure(sequence):
headers = {
'Content-Type': 'application/x-www-form-urlencoded',
}
response = requests.post('https://api.esmatlas.com/foldSequence/v1/pdb/', headers=headers, data=sequence)
name = sequence[:3] + sequence[-3:]
pdb_string = response.content.decode('utf-8')
with open('predicted.pdb', 'w') as f:
f.write(pdb_string)
struct = bsio.load_structure('predicted.pdb', extra_fields=["b_factor"])
b_value = round(struct.b_factor.mean(), 4)
render_mol(pdb_string)
if residues_marker:
start[3] = showmol(render_pdb_resn(viewer = render_pdb(id = id_PDB),resn_lst = [residues_marker]))
else:
start[3] = showmol(render_pdb(id = id_PDB))
st.session_state['xq'] = st.session_state.model
# example proteins ["HXHVWPVQDAKARFSEFLDACITEGPQIVSRRGAEEAVLVPIGEWRRLQAAA"], ["AHKLFIGGLPNYLNDDQVKELLTSFGPLKAFNLVKDSATGLSKGYAFCEYVDINVTDQAIAGLNGMQLGDKKLLVQRASVGAKNA"]
"""
page_names_to_func = {
'About': about_page,
'Display DTI': display_dti
}
selected_page = st.sidebar.selectbox('Choose function', page_names_to_func.keys())
st.sidebar.markdown('')
page_names_to_func[selected_page]()
|