File size: 1,138 Bytes
0dab623
 
a827af5
80ff7a3
e1968b9
80ff7a3
68df42e
80ff7a3
77ca733
68df42e
 
e1968b9
77ca733
68df42e
5516ba5
68df42e
 
 
 
 
80ff7a3
68df42e
80ff7a3
68df42e
 
80ff7a3
7065e35
68df42e
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
import gradio as gr
from transformers import T5Tokenizer, T5ForConditionalGeneration
import torch
from pydantic import BaseModel
import spaces

# Initialize FastAPI and Gradio
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

# Load the tokenizer and model once for use in both FastAPI and Gradio
tokenizer = T5Tokenizer.from_pretrained("alpeshsonar/lot-t5-small-filter", legacy=False)
model = T5ForConditionalGeneration.from_pretrained("alpeshsonar/lot-t5-small-filter", torch_dtype=torch.bfloat16).to(device)

# Gradio interface
@spaces.GPU(duration=120)
def generate_text(input_text):
    inputs = tokenizer.encode("Extract lots from given text.\n" + input_text, return_tensors="pt").to(device)
    outputs = model.generate(inputs, max_new_tokens=1024)
    result = tokenizer.decode(outputs[0], skip_special_tokens=True)
    return result

iface = gr.Interface(fn=generate_text, inputs="text", outputs="text", title="Line of Therapy")

# Function to run both FastAPI and Gradio
def run():
    # Launch Gradio interface
    iface.launch(server_name="0.0.0.0", server_port=7860)

if __name__ == "__main__":
    run()