File size: 1,138 Bytes
0dab623 a827af5 80ff7a3 e1968b9 80ff7a3 68df42e 80ff7a3 77ca733 68df42e e1968b9 77ca733 68df42e 5516ba5 68df42e 80ff7a3 68df42e 80ff7a3 68df42e 80ff7a3 7065e35 68df42e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 |
import gradio as gr
from transformers import T5Tokenizer, T5ForConditionalGeneration
import torch
from pydantic import BaseModel
import spaces
# Initialize FastAPI and Gradio
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# Load the tokenizer and model once for use in both FastAPI and Gradio
tokenizer = T5Tokenizer.from_pretrained("alpeshsonar/lot-t5-small-filter", legacy=False)
model = T5ForConditionalGeneration.from_pretrained("alpeshsonar/lot-t5-small-filter", torch_dtype=torch.bfloat16).to(device)
# Gradio interface
@spaces.GPU(duration=120)
def generate_text(input_text):
inputs = tokenizer.encode("Extract lots from given text.\n" + input_text, return_tensors="pt").to(device)
outputs = model.generate(inputs, max_new_tokens=1024)
result = tokenizer.decode(outputs[0], skip_special_tokens=True)
return result
iface = gr.Interface(fn=generate_text, inputs="text", outputs="text", title="Line of Therapy")
# Function to run both FastAPI and Gradio
def run():
# Launch Gradio interface
iface.launch(server_name="0.0.0.0", server_port=7860)
if __name__ == "__main__":
run() |