Update app.py
Browse files
app.py
CHANGED
@@ -1,32 +1,15 @@
|
|
1 |
import gradio as gr
|
2 |
from transformers import T5Tokenizer, T5ForConditionalGeneration
|
3 |
import torch
|
4 |
-
from fastapi import FastAPI
|
5 |
from pydantic import BaseModel
|
6 |
-
from threading import Thread
|
7 |
-
import uvicorn
|
8 |
|
9 |
# Initialize FastAPI and Gradio
|
10 |
-
app = FastAPI()
|
11 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
12 |
|
13 |
# Load the tokenizer and model once for use in both FastAPI and Gradio
|
14 |
tokenizer = T5Tokenizer.from_pretrained("alpeshsonar/lot-t5-small-filter", legacy=False)
|
15 |
model = T5ForConditionalGeneration.from_pretrained("alpeshsonar/lot-t5-small-filter").to(device)
|
16 |
|
17 |
-
# Health check endpoint
|
18 |
-
@app.get("/health")
|
19 |
-
async def health_check():
|
20 |
-
return {"status": "API is running"}
|
21 |
-
|
22 |
-
# FastAPI endpoint
|
23 |
-
@app.post("/generate")
|
24 |
-
async def generate_text_api(input_text: str):
|
25 |
-
inputs = tokenizer.encode("Extract lots from given text.\n" + input_text, return_tensors="pt").to(device)
|
26 |
-
outputs = model.generate(inputs, max_new_tokens=1024)
|
27 |
-
result = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
28 |
-
return {"output": result}
|
29 |
-
|
30 |
# Gradio interface
|
31 |
def generate_text(input_text):
|
32 |
inputs = tokenizer.encode("Extract lots from given text.\n" + input_text, return_tensors="pt").to(device)
|
@@ -38,15 +21,8 @@ iface = gr.Interface(fn=generate_text, inputs="text", outputs="text", title="Lin
|
|
38 |
|
39 |
# Function to run both FastAPI and Gradio
|
40 |
def run():
|
41 |
-
# Start FastAPI in a separate thread
|
42 |
-
def start_fastapi():
|
43 |
-
uvicorn.run(app, host="0.0.0.0", port=7860)
|
44 |
-
|
45 |
-
t = Thread(target=start_fastapi)
|
46 |
-
t.start()
|
47 |
-
|
48 |
# Launch Gradio interface
|
49 |
-
iface.launch()
|
50 |
|
51 |
if __name__ == "__main__":
|
52 |
run()
|
|
|
1 |
import gradio as gr
|
2 |
from transformers import T5Tokenizer, T5ForConditionalGeneration
|
3 |
import torch
|
|
|
4 |
from pydantic import BaseModel
|
|
|
|
|
5 |
|
6 |
# Initialize FastAPI and Gradio
|
|
|
7 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
8 |
|
9 |
# Load the tokenizer and model once for use in both FastAPI and Gradio
|
10 |
tokenizer = T5Tokenizer.from_pretrained("alpeshsonar/lot-t5-small-filter", legacy=False)
|
11 |
model = T5ForConditionalGeneration.from_pretrained("alpeshsonar/lot-t5-small-filter").to(device)
|
12 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
13 |
# Gradio interface
|
14 |
def generate_text(input_text):
|
15 |
inputs = tokenizer.encode("Extract lots from given text.\n" + input_text, return_tensors="pt").to(device)
|
|
|
21 |
|
22 |
# Function to run both FastAPI and Gradio
|
23 |
def run():
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
24 |
# Launch Gradio interface
|
25 |
+
iface.launch(server_name="0.0.0.0", server_port=7860)
|
26 |
|
27 |
if __name__ == "__main__":
|
28 |
run()
|