alpeshsonar commited on
Commit
a827af5
·
verified ·
1 Parent(s): b423c4a

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +30 -1
app.py CHANGED
@@ -1,8 +1,15 @@
1
  import gradio as gr
2
  from transformers import T5Tokenizer, T5ForConditionalGeneration
 
 
 
 
 
 
 
3
 
4
  # Load the tokenizer and model
5
- tokenizer = T5Tokenizer.from_pretrained("alpeshsonar/lot-t5-small-filter")
6
  model = T5ForConditionalGeneration.from_pretrained("alpeshsonar/lot-t5-small-filter")
7
  device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
8
  model = model.to(device)
@@ -26,3 +33,25 @@ iface = gr.Interface(
26
 
27
  # Launch the interface
28
  iface.launch()
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  import gradio as gr
2
  from transformers import T5Tokenizer, T5ForConditionalGeneration
3
+ import torch
4
+ from fastapi import FastAPI
5
+ from pydantic import BaseModel
6
+
7
+
8
+ # Initialize the FastAPI app
9
+ app = FastAPI()
10
 
11
  # Load the tokenizer and model
12
+ tokenizer = T5Tokenizer.from_pretrained("alpeshsonar/lot-t5-small-filter", legacy=False)
13
  model = T5ForConditionalGeneration.from_pretrained("alpeshsonar/lot-t5-small-filter")
14
  device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
15
  model = model.to(device)
 
33
 
34
  # Launch the interface
35
  iface.launch()
36
+
37
+
38
+ # Define a request body model
39
+ class TextInput(BaseModel):
40
+ input_text: str
41
+
42
+ # Endpoint to generate text from the model
43
+ @app.post("/generate")
44
+ async def generate_text(input_data: TextInput):
45
+ input_text = input_data.input_text
46
+ inputs = tokenizer.encode(input_text, return_tensors="pt").to(device)
47
+
48
+ # Generate the output
49
+ outputs = model.generate(inputs, max_new_tokens=1024)
50
+ result = tokenizer.decode(outputs[0], skip_special_tokens=True)
51
+
52
+ return {"output": result}
53
+
54
+ # Health check endpoint
55
+ @app.get("/health")
56
+ async def health_check():
57
+ return {"status": "API is running"}