alpeshsonar commited on
Commit
e1968b9
·
verified ·
1 Parent(s): 7065e35

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +3 -1
app.py CHANGED
@@ -2,15 +2,17 @@ import gradio as gr
2
  from transformers import T5Tokenizer, T5ForConditionalGeneration
3
  import torch
4
  from pydantic import BaseModel
 
5
 
6
  # Initialize FastAPI and Gradio
7
  device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
8
 
9
  # Load the tokenizer and model once for use in both FastAPI and Gradio
10
  tokenizer = T5Tokenizer.from_pretrained("alpeshsonar/lot-t5-small-filter", legacy=False)
11
- model = T5ForConditionalGeneration.from_pretrained("alpeshsonar/lot-t5-small-filter").to(device)
12
 
13
  # Gradio interface
 
14
  def generate_text(input_text):
15
  inputs = tokenizer.encode("Extract lots from given text.\n" + input_text, return_tensors="pt").to(device)
16
  outputs = model.generate(inputs, max_new_tokens=1024)
 
2
  from transformers import T5Tokenizer, T5ForConditionalGeneration
3
  import torch
4
  from pydantic import BaseModel
5
+ import spaces
6
 
7
  # Initialize FastAPI and Gradio
8
  device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
9
 
10
  # Load the tokenizer and model once for use in both FastAPI and Gradio
11
  tokenizer = T5Tokenizer.from_pretrained("alpeshsonar/lot-t5-small-filter", legacy=False)
12
+ model = T5ForConditionalGeneration.from_pretrained("alpeshsonar/lot-t5-small-filter", torch_dtype=torch.bfloat16).to(device)
13
 
14
  # Gradio interface
15
+ @spaces.GPU(duration=360)
16
  def generate_text(input_text):
17
  inputs = tokenizer.encode("Extract lots from given text.\n" + input_text, return_tensors="pt").to(device)
18
  outputs = model.generate(inputs, max_new_tokens=1024)